
TRoco: A generative algorithm using jazz music
theory

Matthew Caren

Palo Alto, California
matt.t.caren@gmail.com

Abstract. This paper presents TRoco, a generative algorithm for the
composition of music based on jazz music theory and driven by an in-
put of the desired degree of musical tension over time. A method for
the abstraction and analysis of musical structures based on jazz theory
is detailed, as well as the application of this method in a generative
algorithm that produces chord sequences with a desired tension-release
contour. Also presented is an example implementation of TRoco, where
the position of a user in a virtual environment is used to drive generation.

Keywords: algorithmic composition, generative algorithm, jazz music
theory, tension and release

1 Introduction

There are many types of music theory originating from different cultures and
types of music. In the creation of algorithms to generate music, however, classical
Western music theory has been utilized more often, while other types, including
jazz music theory, remain less explored. TRoco (Tension/Release-Oriented Com-
poser) is a generative algorithm for the composition of music that uses the key
concepts from jazz theory to create music to match a tension/release contour
over time.

There are many examples of algorithms that use classical music theory rules
to generate musical sequences. Lerdahl and Jackendoff (1983) is one well-known
example of such a system, and there are many other examples similarly built on
classical music theory rules (Loy, 1989; Robertson et al., 1998). Many algorithms
also employ neural networks and other machine learning approaches to generate
music (Eck & Schmidhuber, 2002; Liu et al., 2014). (It is worth noting that issues
with these models can sometimes be improved with music theory rules (Jaques
et al., 2017).)

Many methods of quantifying and mapping input have been used to generate
music that elicits a desired reaction from a listener, including the valence/arousal
plane (Wallis et al., 2008; Huang & Lin, 2013), and measures such as “scariness
level” (Rutherford & Wiggins, 2002). The existence of “tension and release” in
music—qualitatively described as a sense of rising stress or impending climax,
followed by a feeling of relaxation or resolution (Farbood, 2012)—is an essen-
tial part of music that is closely interrelated with the experience of emotion

2 Matthew Caren

(Krumhansl, 1997; Margulis, 2005). Several generative algorithms use musical
tension to drive generation (Nikolaidis et al., 2012; Herremans & Chew, 2017;
Lerdahl & Jackendoff, 1983), though the development and evaluation of these
algorithms are largely exclusive to Western classical music.

Just as composition students are taught music theory—a known set of effec-
tive techniques, abstractions, and guidelines—and are aware of this theory when
they compose, it seems logical to arm a generative algorithm with this same
knowledge. Jazz composers and improvisers are taught largely the same body
of knowledge to use when creating music, and TRoco aims to utilize these same
concepts in a generative algorithm.

2 Music Theory in TRoco

TRoco uses a jazz approach to music theory to inform generation. Jazz theory
is not exclusive to jazz music; it is simply a flexible and powerful method of
abstracting, analysing, creating, and communicating musical structures. It is
important to note that, as stated in Levine (1995)’s foundational book on jazz
theory, “There is no one single, all inclusive ‘jazz theory’; however, that “there
is a common thread of development in jazz theory, a thread that has evolved
logically from the earliest days of jazz.” This theory is related to but largely
distinct from the classical approach to music theory. Basic jazz theory can be
generalized and abstracted such that a few key concepts can be used to analyze
very complex structures, and an additional benefit is that one state does not
restrict the available choices for the next musical or emotional state, making
it especially powerful when considering a wide variety of possible musical and
emotional directions.

Many bodies of music theory have in common the concept of tension and
release. There are many analyses and models of tension and release in classical
music (Farbood, 2012, p. 390), but as noted by Farbood (2012) there are very
few examples of similar research with non-classical music (Fredrickson & Coggi-
ola, 2003; Rozin et al., 2004). However, despite the relative scarcity of research
on tension and release in non-classical music theory, there are well-established
techniques in jazz theory for creating and releasing tension. These methods are
foundational to jazz composition and improvisation, and are actively used while
creating music. TRoco utilizes the key elements of the system of jazz harmony
taught specifically at the Grove School of Music and outlined by cornerstone jazz
theory books such as (Levine, 1995; Harrison, 1995). This approach is similar to
a jazz composer who draws upon their knowledge of jazz theory to create music.

Fig. 1: Example Abstraction of a Chord

TRoco: A generative algorithm using jazz music theory 3

In TRoco, chords are represented by conventional jazz chord symbols, which
can be decomposed into two components: a “root” and a “quality.” The root of
a chord is the tonal foundation of a chord and the note from which the rest of
the chord is built. The chord quality determines the other notes in the chord
relative to the root. As shown in Figure 1, in a “C9” chord (comprised of the
notes [C E G B[D]), “C” is the root of the chord, and “9”, which represents a
dominant 9th chord, is the chord quality—the rest of the notes [E G B[D] are
determined by the chord quality “9,” relative to C. Chord qualities determine
notes relative to a root; a “9” chord only represents the notes [C E G B[D] if
the root is C. The same chord quality “9” in an “A9” chord denotes a different
set of notes, [A C] E G B]. However, a chord quality often behaves in a similar
way regardless of its root note, so this method of representation allows chords to
be analyzed in terms of their functions rather than their manifestations. More
generally, maintaining a level of abstraction ensures that elements retain musical
meaning; it allows for the creation and analysis of musical structures rather than
individual notes.

3 Algorithm Structure

3.1 TRQ, a “Tension/Release Quotient”

To use the concept of tension and release in TRoco, the methods from jazz
theory to create and release tension must be rigorized and quantized. This is
accomplished through the “tension/release quotient” (the “TRQ”): an integer
between -10 and 10, representing the degree of tension or release imparted by the
change from the current state to a possible next state, where -10 represents the
maximum amount of release and 10 represents the maximum amount of tension.

A key consideration when evaluating tension/release is the existence of both
“vertical” and “horizontal” significance of every musical element. Vertical signif-
icance refers to an element’s relationship to other elements that are present at
the given moment in time (including those held constant throughout an entire
generation, such as a key), while horizontal significance refers to an element’s
relationship to elements present at a different time (an element’s relationship
to what preceded it). This approach supplies two axes of meaningful analysis of
any structure. For instance, a higher degree of vertical chromaticism in a chord
results in a greater, more tense, TRQ (thus a “[9” in a chord, such as a D[in
a C chord, would result in a more tense TRQ). Horizontal significance is also
considered: for example, the interval between a chord’s root and the previous
chord’s root (always calculated as an ascending interval) is considered—a 4th
interval, for instance, would result in a more released TRQ.

The vertical factors that influence the TRQ are:

– chord quality
– chromaticism within a chord (i.e. through chord extensions and alterations)
– root note in/out of the key
– chord tones in/out of the key.

4 Matthew Caren

The horizontal factors that influence the TRQ are:
– root note interval
– notes in common with previous chord
– notes a half-step away from the previous chord (leading tones)
– chord quality of the previous chord in relation to the current chord.

The default TRQ is 0, and each vertical and horizontal consideration in-
creases or decreases the value.

For instance, if the current chord is C major, the movement C major → A
minor, which is diatonic, has a root note interval of a major 6th, and shares in
common 2 chord tones with C major, has the slightly released TRQ of -2. The
movement C major → A7[9, however, has the same root note interval but is a
dominant chord with a chromatic alteration ([9) and two chord tones not in the
key of C major, so it has a more tense TRQ of 4.

The input for TRoco is an array (for a generation of fixed length) or con-
tinuous stream (for a generation with unknown length) of TRQ values that
represents the desired tension or release of the generation over time. Depending
on the application, this tension/release profile can be obtained directly from the
user or from another source—for instance, if TRoco is being used to generate
music to accompany a video game, the events occurring in the game could be
used to produce the profile.

3.2 Core Algorithm

The basic structure of the algorithm is displayed in Figure 2. Before generation
starts, it is necessary to define the set of possible states that the generation could
output. When generating chords, this is accomplished by specifying a domain of
possible roots and chord qualities. For instance, a possible domain could include
the root notes [C F G], and the chord qualities [major minor 7], yielding overall
possible combinations of: C, C minor, C7, F, F minor, F7, G, G minor, and G7.

Fig. 2: Flowchart of algorithm structure

Whenever TRoco reaches a musical state, the TRQs of all possible next states
are calculated, and the algorithm chooses the state with a TRQ that most closely
matches the target profile. This state becomes the current state, and the process
is repeated. The algorithm can be executed with multiple “threads,” where sev-
eral of the closest matches are selected at each stage of the algorithm, creating an

TRoco: A generative algorithm using jazz music theory 5

N-ary tree structure. At the end of generation, the best overall choice (evaluated
by the sum of the deviations of the generations from the target) is selected. This
results in generations that more closely match the target tension/release profile.
With just a single thread, TRoco can be used for real-time generation of chords
based on a TRQ input that changes in real time; for near-real-time generation,
the algorithm can generate one or two states ahead and choose the best option.
Since TRoco deals with the tension and release of state changes, not the actual
states themselves, an initial state must be chosen at the beginning of generation.

Data: desired TRQ contour, intial chord, root domain, chord quality domain
Result: chords matching TRQ contour
GenerateChords

foreach TRQ value in goal contour do
goalTRQ = current TRQ value;
last = last chord;
currentBestF it = none;
currentBestF itTRQ = infinity;
foreach note in root domain do

foreach quality in chord domain do
thisChord = chord with current root, chord quality;
if |FindTRQ(last, thisChord)− goalTRQ| <
|currentBestF itTRQ− goalTRQ| then

currentBestF it = thisChord;
currentBestF itTRQ = FindTRQ(last, thisChord);

end

end

end
append currentBestF it to chord array;

end
def FindTRQ(last, current):

int TRQ = 0;
TRQ += chord quality;
TRQ += chromaticism within notes of current;
TRQ += root of current in/out of key;
TRQ += chord tones of current in/out of key;
TRQ += root note interval last to current;
TRQ += notes shared by last, current;
TRQ += notes half-step away between last, current;
TRQ += chord quality of last vs current;
return TRQ

end

end

Fig. 3: Pseudocode for basic algorithm

6 Matthew Caren

Figure 3 presents pseudocode outlining the basic algorithm for a single-thread
system iterating over a TRQ contour. Note that the weightings of the various
considerations within the FindTRQ function are subjective, and altering these
values can provide different variations of generation types within the same gen-
eral structure.

The TRoco code1 is written in Javascript and utilizes the open source Tonal.js
library for basic musical structures.

4 Example Implementation

TRoco was used to generate music for a simple video game2 (Figure 4). In the
game, a user is able to control the position of a character in a 3D environment
that contains a skull (whose location is marked with a red sphere) and a treasure
chest (marked with green sphere). The target TRQ is calculated every second
by comparing the player’s location to the location of the two spheres—the closer
the player is to the red sphere, the higher the TRQ; the closer the player is to the
green sphere, the lower the TRQ. Thus, the user being closer to the skull results
in more tense chords being generated, while being closer to the chest results in
a release of tension. The generated chords are passed to a series of arpeggiators
that trigger samples to create the music heard in the game.

Fig. 4: Screenshot from example game

Table 1 displays the target TRQs and the generated chords in the recorded
video. Note that chords tend to increase in dissonance and harmonic complexity
with higher TRQs, as well as the presence of commonplace jazz figures, such
as the harmonic resolution of the generation via a ii-V-I progression in the last
three generated chords.

1 https://github.com/matthewcaren/troco
2 https://youtu.be/1MMVgYcOZkw

TRoco: A generative algorithm using jazz music theory 7

Target TRQ Chord

– Dm7

0 Am9

2 Fmaj7

3 Am9

5 B6

6 BmMaj7

9 FmMaj7

10 A7

7 F7

1 Dm7

-4 G6

-10 C6

Table 1: Example target TRQ input and generated chords in example

Though a straightforward example, this implementation displays how the
TRoco and the TRQ input can be used simply and effectively to generate music
that reacts to changes in a virtual environment in real-time.

5 Next Steps

TRoco’s core tension/release-driven algorithm could be applied effectively to the
generation of any musical structure, not just chords—the calculation of the TRQ
would simply be adapted to calculate the tension or release imparted by each
possible musical choice. If multiple musical structures are being generated (for
instance, chords and melody), the tension or release of the individual components
would be calculated, as well as the tension or release created by their coexistence.

The simplicity and flexibility of the single tension/release input allows TRoco
to be adapted for a large variety of applications. Creators producing games,
movies, installations, or VR experiences could use TRoco to create music that
conforms to the intended tone. Using sentiment analysis, the emotional content
of a text source could be used to calculate a TRQ over time, so the algorithm
could be used to generate musical accompaniment for an online messaging con-
versation, e-book, or social network feed.

There still exists space to explore the use of contemporary jazz theory in
composition algorithms, which could offer novel contributions to algorithms built
on classical theory or provide a different perspective to inform the creation and
analysis of machine-learning based models.

8 Matthew Caren

References

Eck, D., & Schmidhuber, J. (2002). Finding temporal structure in music: Blues
improvisation with LSTM recurrent networks. In Proceedings of the 12th
IEEE Workshop on Neural Networks for Signal Processing (p. 747-756).

Farbood, M. M. (2012). A parametric, temporal model of musical tension. Music
Perception, 29 (4), 387–428.

Fredrickson, W. E., & Coggiola, J. C. (2003). A comparison of music majors’ and
nonmajors’ perceptions of tension for two selections of jazz music. Journal
of Research in Music Education, 51 (3), 259–270.

Harrison, M. (1995). Contemporary music theory. Milwaukee, Wisconsin: Hal
Leonard Corporation.

Herremans, D., & Chew, E. (2017). Morpheus: generating structured music
with constrained patterns and tension. IEEE Transactions on Affective
Computing .

Huang, C.-F., & Lin, E.-J. (2013, June 11-15). An emotion-based method to
perform algorithmic composition. In Proceedings of the 3rd International
Conference on Music & Emotion (ICME3).

Jaques, N., Gu, S., Turner, R. E., & Eck, D. (2017). Tuning recurrent neural
networks with reinforcement learning. arXiv preprint arXiv:1611.02796 .

Krumhansl, C. L. (1997). An exploratory study of musical emotions and psy-
chophysiology. Canadian Journal of Experimental Psychology/Revue cana-
dienne de psychologie expérimentale, 51 (4), 336.

Lerdahl, F., & Jackendoff, R. S. (1983). A generative theory of tonal music.
Cambridge, MA: MIT press.

Levine, M. (1995). The jazz theory book. Petaluma, California: Sher Music Co.

Liu, I., Ramakrishnan, B., et al. (2014). Bach in 2014: Music composition with
recurrent neural network. arXiv preprint arXiv:1412.3191 .

Loy, G. (1989). Composing with computers: A survey of some compositional
formalisms and music programming languages. In Current Directions in
Computer Music Research (pp. 291–396).

Margulis, E. H. (2005). A model of melodic expectation. Music Perception,
22 (4), 663–714.

Nikolaidis, R., Walker, B., & Weinberg, G. (2012). Generative musical tension
modeling and its application to dynamic sonification. Computer Music
Journal , 36 (1), 55–64.

Robertson, J., de Quincey, A., Stapleford, T., & Wiggins, G. (1998). Real-time
music generation for a virtual environment. In Proceedings of ECAI-98
Workshop on AI/Alife and Entertainment.

Rozin, A., Rozin, P., & Goldberg, E. (2004). The feeling of music past: How
listeners remember musical affect. Music Perception, 22 (1), 15–39.

Rutherford, J., & Wiggins, G. (2002). An experiment in the automatic creation
of music which has specific emotional content. In Proceedings for the 7th
International Conference on Music Perception and Cognition.

References 9

Wallis, I., Ingalls, T., & Campana, E. (2008). Computer-generating emotional
music: The design of an affective music algorithm. In Proceedings - 11th
International Conference on Digital Audio Effects, DAFx 2008 (pp. 7–12).

