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Abstract. In this article, I outline the development of corpus naviga-
tion software for composing with a large corpus of samples generated
by ‘moshing’ files. The paper will discuss the technical implementation
and rationale for decisions made in the development process as well as
touching on some compositional applications.
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Introduction This article explicates the development process of software for
computer-assisted corpus exploration. While there is existing software grounded
in similar interests such as CataRT (Schwarz, Beller, Verbrugghe, & Britton,
2006), FluidCorpusMap (Roma, Green, & Tremblay, 2019) or AudioStellar,1

none of these tools integrate with my artistic practice, which employs mixture
of computer-aided techniques to compose with collections of textural sounds.
This software was specifically developed for composing an album of works,
to which a pre-release can be found at https://jamesbradbury.xyz/docs/

reconstruction error. The software is available for modification and use, so
this work could extend into other contexts where machine learning thrives, such
as in fully autonomous compositional programs, recommendation tools or pro-
grams for intelligently recombining musical material. The code is available at
https://www.github.com/jamesb93/data bending.

Creating a synthetic corpus with “moshing” The corpus is generated by
“moshing”, where raw data is converted into audio files. Moshing was orches-
trated with a bespoke command line tool.2 Overall, it produces a diverse corpus
of sounds ranging from purely noisy to morphologically interesting, almost hu-
manly composed gestures.

Segmentation Once the corpus is generated, each corpus item is segmented. My
segmentation rationale was guided by listening and I settled on the model that
demarcations aligned with significant spectral shifts. After experimenting with
segmentation algorithms from the Librosa (McFee et al., 2015) library, such as
Laplacian segmentation3 and observing spectrograms of corpus items, I sought

1 http://audiostellar.xyz
2 https://www.github.com/jamesb93/mosh
3 https://librosa.org/doc/latest/auto examples/plot segmentation.html

https://jamesbradbury.xyz/docs/reconstruction_error
https://www.github.com/jamesb93/data_bending
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https://www.github.com/jamesb93/mosh
https://librosa.org/doc/latest/auto_examples/plot_segmentation.html
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an algorithm that could be tuned to detect these spectral boundaries. Using
Jonathon Foote’s novelty algorithm (Foote, 2000), I produced segmentations on
several test items that aligned well with perceptually notable spectral change. I
applied the settings from these tests in a pass over every corpus item, as I did
not want to spend an indefinite amount of time solving a segmentation problem,
accepting that some files might be poorly segmented.

Analysis The next step was to produce analysis that could be supplied to
further processes. I planned to use features such as spectral centroid, loudness,
pitch and spectral flatness- however, there are issues when working with such fea-
tures. First, they are often calculated as statistical summaries of frame-by-frame
analysis requiring careful sanitisation. Ben Hackbarth has shown promising re-
sults with AudioGuide (Hackbarth, Schnell, & Schwarz, 2010) using perceptual
weighting of frames to solve such problems. Furthermore, choosing an appropri-
ate statistical summary can favour certain perceptual features and influence the
meaning of the descriptors. Second, scaling of descriptors can be problematic
and reconciling various scales can change how a corpus is represented. This led
me to use MFCCs for analysis as they are robust against differences in loudness
and are capable of differentiating the textural characteristics of sounds. For each
sample, an MFCC analysis was conducted using FluCoMa’s implementation with
a window size of 2048, hop size of 1024, 40 melbands and 13 coefficients. Seven
statistics- mean, standard deviation, skewness, kurtosis, minimum, median and
the maximum, are taken for each band along with two derivatives. This was an
effort to capture the morphology of the sound. These statistical summaries are
flattened to one-dimension and each column of these vectors is standardised.

Dimension Reduction While MFCC values are strictly defined, they are hard
to interpret and to relate to higher level musical characteristics. In similar work,
various dimension reduction techniques have been used to produce compressed
representations of data. Examples are Stefano Fasciano (Fasciani, 2015), Flu-
idCorpusMap (Roma et al., 2019), Flow Synthesizer (Esling, Masuda, Bardet,
Despres, & Chemla-Romeu-Santos, 2019) and Thomas Grill (Grill & Flexer,
2012). Using the algorithm “Uniform Manifold Approximation and Projection”
(UMAP) (McInnes, Healy, & Melville, 2018), the MFCC dimensions was reduced
from 273 to 2 to support visualisation. A strength of UMAP is its potency for cap-
turing non-linear features compared to algorithms such as Principal Component
Analysis. Furthermore, UMAP can be coerced to favour global or local struc-
ture through the “minimum distance” (mindist) and “number of neighbours”
(n neighbours) parameters, useful for manipulating the projection to favour var-
ious spatial relationships.

Clustering The reduced data was then clustered to understand how corpus
items were projected onto the manifold. Using a hierarchical clustering algo-
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rithm,4 I ran a clustering pass with 250, 500 and 1600 clusters. These were
chosen from intuition and the relationship of these amounts to the total items.

Application of Outputs Visualising the characteristics of the UMAP projec-
tions, the topology becomes a source of inspiration from the location, shape and
relationships between clusters of samples. In particular, sample clusters located
away from the main body of the projection became sites of interest that were
investigated further through manual audition. This was the first method of ex-
ploration that demonstrated the success of the combined analysis in perceptually
mapping out the corpus items.5

The clustering outputs were used in composition in a direct manner by juxta-
posing clusters for musical effect. This is evidenced in the first track (340685107feis-
raebbaatsaedisn.sqlite) where clusters of impulse-based material are superim-
posed to create phasing and micro-rhythmic patterns. These structures are formed
by the sample’s memberships to those clusters and otherwise would have to be
manually arranged or organised through other means. Clustering somewhat en-
sures that each layer in the texture is perceptually homogenous and allows me
to work with the notion of a “cluster” as unified compositional material.

Prior to clustering, manual auditioning was used to categorise some types
of sounds generated from moshing. By knowing the characteristics of samples
that were manually categorised, one can speculate that samples belonging to
the same computationally calculated cluster should be texturally similar. This
became the basis of the final track of the album which features “outlier” sounds
from the corpus that have chaotic and noisy spectra.

Conclusion Much existing corpus software is oriented around source/target
models and does not support workflows involving digital audio workstations.
This article presents techniques for analysing large sound collections and com-
posing mostly cluster data. While working like this suits me, there are advantages
that could benefit other practices based on computer-assisted workflows espe-
cially for those who use sample-based materials. Most importantly, this software
brings the process of corpus exploration closer to the compositional process. Clus-
tering aligns closely with my preferences for dealing with compositional material
as composite groups, with the computer seemingly able to suggest organisations
through data-driven processes. In the future, this system will be further devel-
oped under the banner “FTIS” (Finding Things in Stuff). Work has already
begun on developing a command-line tool for which similar processes as found
in this paper can be coordinated easily and with speed. I intend to include more
computer-assisted processes for composing with these types of analyses, enabling
additional methods of exploring sound collections with the aid of content-aware
processes. This can be found at https://www.github.com/jamesb93/ftis.

4 https://scikit-learn.org/stable/modules/generated/sklearn.cluster

.AgglomerativeClustering.html
5 Interactive UMAP projections are viewable at https://umapaudio.onrender.com/
src/interactive scatter.html.

https://www.github.com/jamesb93/ftis
https://scikit-learn.org/stable/modules/generated/sklearn.cluster.AgglomerativeClustering.html
https://umapaudio.onrender.com/src/interactive_scatter.html
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