
Towards an Evaluation of Symbolic Music
Encodings for RNN Music Generation

Manos Plitsis1, Kosmas Kritsis2,3, Maximos Kaliakatsos-Papakostas2,
Aggelos Pikrakis2,3 and Vassilis Katsouros2

1 Dept. of Computer Science, Sorbonne University, France
{plitsis}@ircam.fr

2 Institute for Language and Speech Processing, Athena R.C., Greece
{kosmas.kritsis, maximos, vsk}@athenarc.gr

3 Dept. of Informatics, University of Piraeus, Greece
{pikrakis}@unipi.gr

Abstract. The choice of encoding for symbolic music data used in mu-
sic generation models has typically been done in a case-by-case basis up
to now. In this paper we attempt to evaluate and study the behaviour
of a baseline shallow LSTM network trained on Irish folk music, us-
ing three different encodings: a MIDI-like event-based encoding, a fixed
timestep-based encoding, and the popular ABC notation. We use objec-
tive statistical measures on the network output and also visualise the
LSTM parameters to gain insight on the way it processes each encoding.

Keywords: Music generation, Symbolic Music Encoding, LSTM, Re-
current Neural Networks

1 Introduction

Symbolic music generation with Neural Networks (NNs) is a sub-field of Algo-
rithmic Composition and Artificial Intelligence (AI) that, while fairly old, has not
seen the advancements of fields like Natural Language Processing, while borrow-
ing many of its methods. This partly has to do with the abstract, semantically
ambiguous nature of music, compared to natural language. In our opinion, this
is also due to the choice of representation for musical data, which has not been
standardized, and is usually modelled after transcription methods intended for
human readability (e.g. ABC notation, tablature), or popular standards whose
function was not designed for this use (e.g. MIDI). While these issues have been
addressed in the past (Dannenberg, 1993; Byrd, Boyle, Berggren, Bainbridge, et
al., 1997; Honing, 1993), there have been to the best of our knowledge no studies
in the empirical effects of encoding using specific NN generation systems.

In this paper we limit our scope to sequence-based representations where
steps are musically meaningful, in order to cover popular encodings like ABC,
piano-roll and MIDI-like encodings. We view the choice of encoding not just as
another hyperparameter for a network or other statistical model that is arbitrar-
ily chosen in practice, but as an integral part of a system, the choice of which is
informed by a theoretical and empirical understanding of its effects.



2 M. Plitsis et al.

2 Encodings

As our original dataset, we use a collection of Irish folk tunes, transcribed in
the ABC music format, which was collected and preprocessed by the folk-rnn
team (B. L. Sturm, Santos, Ben-Tal, & Korshunova, 2016) 4, and on which folk-
rnn has been trained on. From there we extract two more encodings, one based
loosely on the MIDI protocol which we denote event1 and another based on
fixed timestep representations which we denote tstep1. Here we give their basic
specifications and individual information.

In tstep1, each piece is represented as an array of integer tokens in the range
0 – 129, where: tokens 0 – 127 denote a note-on event, 128 denotes a rest and
129 means ”continue playing the last-seen note”.

To encode a piece of music, we first specify a resolution parameter, which
gives the length of the timestep in subdivisions of a quarter note: a resolution
of 4 means the timestep length is 1/16th. As an example, when transcribing
a C3 quarter note followed by two C3 eighth notes, we get the sequence [60,
129, 129, 129, 60, 129, 60, 129]. Obviously, the smallest note length that can be
represented is equal to the timestep length, so all pieces are quantized during
conversion. Timestep-based encodings were used extensively from the early ap-
plications of NNs to music generation (Todd, 1989; Eck & Schmidhuber, 2002),
as it was believed that having a fixed timestep helped a model to better process
rhythm (Gers & Schmidhuber, 2000).

event1 is loosely based on the MIDI protocol, containing events for note-on
and note-off, while the passage of time is explicitly notated with special “move
forward in time” events. Specifically: tokens 0 –127 denote note-on events, 128
– 255 denote note-off events, 256 – 356 denote time-shift events.

Time-shift events move time forward by some increment, which herein is
based on a grid, but can also be in seconds. In our implementation, 256 denotes
the shortest time interval used (equivalent to a 32nd note), and subsequent events
denote its multiples. This facilitates the comparison with timestep-based encod-
ings. A typical pattern, especially with well-quantized pieces is: note-on, wait,
note-off(, wait), note-on etc. So for each note in the original piece we would need
three or four distinct tokens to encode it, meaning that there is a strict bound to
the events needed to represent a piece, which does not grow with resolution. For
most music, this is significantly less than any timestep-based encoding. This is
especially important when the goal is to capture real-time performance, where
the step duration can be as low as 1/44100 of a second. This encoding, with
the addition of velocity events, was used in Magenta’s Performance RNN (Oore,
Simon, Dieleman, Eck, & Simonyan, 2020).

As ABC notation is an ever-evolving transcription language, there is no
definitive, formal “ABC standard”5. As the “pure” text-based ABC format is,
strictly speaking, outside the scope of this paper, we employ the “tokenized”

4 Specifically data v3
5 The reader is advised to reference the latest documentation on the abc standard
http://abcnotation.com/wiki/abc:standard



Evaluation of Symbolic Encodings for Music Generation 3

version (also used by folk-rnn), which transforms it by grouping symbols to-
gether to create musically meaningful symbols. This tokenization is arbitrary:
a different choice would lead to another distinct encoding, e.g. the duration of
a note could be included in note-tokens or the note octave could be a separate
token. Header information serves as a sort of classifying token, when tunes of
different meter (M), key (K) or default note length (L) are in the same dataset.
In our experiments, we further filtered the folk-rnn dataset pieces to keep only
those in the key of C or its modes with a 4/4 time signature, and discarded all
header information, adding only start and stop symbols at the beginning and
end of songs. We kept only the 4/4 tracks so that we have a uniform dataset
and we can later detect how well each encoding translates metric information.
The reason for removing headers is that the other two encodings have implicit
metric and key information, while the ABC header can act as a classifier, giving
extra information to the system. By having no header information we can auto-
regressively generate pieces of arbitrary length. This resulted to a total of 12117
transcriptions.

3 Empirical Evaluation

Our aim is to use music-specific objective statistical measures to assess the net-
work’s output similarity to the original dataset, as in (Yang & Lerch, 2018).
Another objective is to inspect the model’s parameters to study how it repre-
sents music internally, similarly to (Karpathy, Johnson, & Fei-Fei, 2015) and
(B. Sturm, 2018).

3.1 Experimental Setup

Dataset Starting from the dataset described in Section 2, we convert the ABC
pieces to MIDI and use them to extract the event1 and tstep1 encoded datasets,
which consist of a one-dimensional integer vector for each piece, with each integer
representing an event as described in Section 2. We use a dictionary with length
equal to the number of different events in the dataset to further encode each
piece. We split each dataset into a training and validation set (the validation set
being 10% of all pieces), each containing the same pieces across datasets.

The resulting datasets are different in many ways. The sequence length
needed to represent one measure is 8.71 (STD 3.362) for the ABC dataset, 20
(STD 3.939) for the event-based encoding, and always 32 for the fixed timestep
one. The token distribution is also very different: in Figure 1 we plot (in log-
scale) the frequency of each token for the three versions of the dataset. Notice
how skewed the tstep1 distribution is, or the prevalence of “advance-by-1/8”
(the spike in the green area of the event1 plot).

Network Architecture and Training We choose a small, shallow LSTM net-
work with one layer and a hidden state of dimension 32, followed by a Dense
layer for each output of dimension equal to the vocabulary size. The Dense layer



4 M. Plitsis et al.

(a) ABC (b) tstep1 (c) event1

Fig. 1: Distribution of distinct tokens for each representation (left to right: abc
- event1 - tstep1). The y axis denotes absolute number of occurrences in a loga-
rithmic scale.

outputs are then passed by a softmax function to yield a probability distribu-
tion for each timestep, from which we sample the dictionary index for the next
prediction during inference. We train the network with partially overlapping se-
quences of 100 one-hot encoded vectors, using a sliding window across the length
of each piece. The categorical crossentropy loss is computed for batches of size
256, between each input sequence and the sequence of outputs of the Dense layer
and the network gradients are back-propagated at the end of each batch. The
weights are updated using the Adam optimizer, with an initial learning rate
of 0.001. During training we monitor the validation loss, stopping the training
when it starts increasing for more than two epochs.

3.2 Results

We generate 200 pieces from each model that was trained with a different en-
coding. We use as seeds the beginning of the first 200 tunes from the validation
dataset (1205 pieces long), with variable seed length so as to represent exactly
one bar. We generate exactly 8 bars for each song to obtain 200 9-bar samples for
each encoding plus 200 9-bar samples from the original dataset. The generated
pieces can be found in the followig link: https://github.com/manosplitsis/
MusicRep/tree/master/JCIM2020 listening data. We process the samples ac-
cording to (Yang & Lerch, 2018): First, music related statistical measures are
computed for each set. An exhaustive cross validation inside each dataset (inter-
set) and between pairs of datasets (intra-set) is computed measuring the eu-
clidean distance of each measure. These relative measures give a histogram for
each feature, from which we compute a continuous Probability Density Function
(PDF) using Kernel Density Estimation. To compare the generated data with
the original, we compute the KL Divergence (KLD) and Overlapping Area (OA)
between the intra-set PDF of the generated data with the inter-set PDF between
the generated and original data. A low KLD indicates similarity in the shape of
compared distributions while high OA indicates higher probability density over-
lap. This will allow us to compare how closely related is each model’s output to
the original dataset with respect to each measure. We were not able to find any
major distinction in any measurement using this method. All three models seem



Evaluation of Symbolic Encodings for Music Generation 5

to adequately model the dataset’s characteristics, as seen by the small KL diver-
gence and fairly high OA (tables of the results can be seen in the Appendix, in
Table 2). This contradicts our experience when listening to the generated pieces,
that vary in quality and possess different characteristics. Specifically, the ABC
trained network gives overall the best results, producing seemingly human-like
musical pieces with some kind of structure (this is facilitated by the existence
of repeat barlines). The event1 trained network gives fairly good results melod-
ically and structurally, but contains a lot of syncopation which is not present in
the original dataset. An advance time token is predicted after a note-on token,
but its duration is often unusual, possibly due to randomness from sampling.
The event2 trained network output is the weakest of all three, something which
is consistent with earlier experiments (Plitsis, Kritsis, Kaliakatsos-Papakostas,
& Katsouros, 2020). This suggests that the selected measures may not be well-
suited to the task.

One thing shared more or less by all the networks’ outputs (despite all being
mainly in the right key) is their ability to consistently output music that sounds
like it is in 4/4. We decided to visualise the activations for each of the 32 neu-
rons of the LSTM layer for the beginning of a tune in all encodings, to see if
we can correlate it to metric (or other) information. Some things immediately
become evident: for ABC notation neurons 9 and 22 seem to be responsible for
keeping track of barlines, with neuron 9 activating when a barline is fed to the
network and 22 anticipating it (see the high probability of a barline occuring
after activations). In the other encodings (that do not have explicit barlines) we
find no apparent way to tell if the network knows how to count. On the other
hand some local patterns become clearer: In event1, after a note-on event the
network is fairly sure to output an advance-time event (specifically one equiva-
lent to 1/8th, the default note-length for all pieces in the original ABC dataset).
Note-on events have fewer activations (specifically one neuron is consistently ac-
tivated) and are not biased towards one particular prediction, which means that
the output is quite variable melodically. The three network parameter visualisa-
tions are presented in the Appendix A.2.

4 Conclusions and Future Work

Despite its limitations, we believe that an extended research on the effects of
encoding in musical data, is essential to the field of music generation and music
information retrieval. On the one hand, it can help with analyzing the behaviour
of specific network architectures, when confronted with the same semantic in-
formation encoded in different ways. On the other hand, it can aid in the design
of new musical encodings, better suited for a system’s task, whatever it might
be. Future work involves a better understanding of the effects of re-encoding
musical information, the use of state-of-the-art architectures such as Transform-
ers, the comparison with natural language generation systems and the way they
encode language information, as well as the design of standardized benchmarks
for large-scale experiments with many different encodings.



6 M. Plitsis et al.

A Appendix

A.1 Objective Measurements of the network output

Table 1: Absolute and intra-set differences for all measures Measure abbrevia-
tions: Pitch Count(PC), Note Count (NC), Pitch Class Histogram (PCH), Pitch
Class Transition Matrix (PCTM), Pitch Range (PR), Average Pitch Shift (PS),
Average Inter-onset Interval (IOI), Note Length Histogram (NLH), Note Length
Transition Matrix (NLTM).

Dataset tstep1 abc event1

Abs.Value Intra-Set Abs.Value Intra-Set Abs.Value Intra-Set Abs.Value Intra-Set
mean std mean std mean std mean std mean std mean std mean std mean std

PC 9.590 1.689 1.906 1.449 13.075 2.371 2.606 2.122 11.720 2.283 2.544 2.001 12.530 12.530 2.294 1.804
PC/bar 4.528 1.772 4.770 1.298 4.709 1.475 4.575 1.180
NC 61.520 10.112 10.50 9.761 62.810 6.621 6.918 6.345 62.785 7.782 8.277 7.295 58.345 58.345 6.168 5.632
NC/bar 4.953 2.973 5.367 2.155 5.315 2.350 4.919 1.894
PCH 0.301 0.103 0.191 0.059 0.233 0.079 0.191 0.060
PCH/bar 0.093 0.376 0.062 0.307 0.732 0.789 1.492 0.186
PCTM 16.933 3.674 11.225 1.623 13.182 2.551 10.855 1.684
PR 15.810 3.208 3.595 2.787 21.365 4.143 4.597 3.656 19.455 4.370 4.955 3.719 20.220 20.220 4.044 3.095
PS 2.967 0.615 0.669 0.560 2.853 0.341 0.379 0.301 2.908 0.453 0.501 0.402 2.827 2.827 0.404 0.323
IOI 0.302 0.061 0.056 0.066 0.290 0.039 0.036 0.041 0.285 0.038 0.037 0.039 0.294 0.294 0.038 0.040
NLH 0.376 0.336 0.287 0.282 0.328 0.323 0.299 0.310
NLTM 24.677 17.009 20.136 15.491 22.569 17.336 18.892 15.395

Table 2: Similarity statistics between dataset and generated distributions. Mea-
sure abbreviations are explained in the Table 1 caption.

PC PC/bar NC NC/bar PCH PCH/bar PCTM PR PS IOI NLH NLTM

tstep KLD .1369 .2657 .0078 .0924 .0080 .1686 .0456 .0718 .0141 .0650 .0230 .0133
OA .7419 .9351 .8675 .8942 .6580 .4799 .4780 .7893 .8306 .8649 .8586 .9067

abc KLD .1746 .1046 .0088 .0334 .0234 .1947 .1120 .0075 .0043 .1280 .0151 .0129
OA .8775 .9549 .9062 .8981 .8251 .5556 .7153 .9267 .9048 .8709 .9074 .9314

event KLD .2605 .5395 .0395 .3559 .0552 .9893 .4550 .0296 .0085 .3785 .0397 .0194
OA .7358 .9366 .7323 .9041 .6768 .7352 .4495 .8132 .8464 .8615 .8529 .8536



Evaluation of Symbolic Encodings for Music Generation 7

A.2 Visualisation of the Network activations

Fig. 2: Activations and predictions for the same song (top to bottom: ABC-
event1-tstep1) For each of the three, on top: input sequence, middle: LSTM
activations for each neuron (Dark blue is -1, Yellow is +1), bottom: top three
predictions (more yellow is higher probability).



8 M. Plitsis et al.

References

Byrd, D., Boyle, R. D., Berggren, U., Bainbridge, D., et al. (1997). Beyond midi
- the handbook of musical codes. MIT press.

Dannenberg, R. B. (1993). A brief survey of music representation issues, tech-
niques, and systems.

Eck, D., & Schmidhuber, J. (2002, 02). Finding temporal structure in music:
Blues improvisation with lstm recurrent networks. In (Vol. 12, p. 747 -
756). doi: 10.1109/NNSP.2002.1030094

Gers, F. A., & Schmidhuber, J. (2000). Recurrent nets that time and count. In
Proceedings of the ieee-inns-enns international joint conference on neural
networks. ijcnn 2000. neural computing: New challenges and perspectives
for the new millennium (Vol. 3, pp. 189–194).

Honing, H. (1993). Issues on the representation of time and structure in
music. Contemporary Music Review , 9 (1-2), 221-238. doi: 10.1080/
07494469300640461

Karpathy, A., Johnson, J., & Fei-Fei, L. (2015). Visualizing and understanding
recurrent networks. arXiv preprint arXiv:1506.02078 .

Oore, S., Simon, I., Dieleman, S., Eck, D., & Simonyan, K. (2020). This time
with feeling: Learning expressive musical performance. Neural Computing
and Applications, 32 (4), 955–967.

Plitsis, M., Kritsis, K., Kaliakatsos-Papakostas, M., & Katsouros, V. (2020).
Evaluation of different symbolic encodings for music generation with lstm
networks. In Proceedings of the 13th international workshop on machine
learning and music (mml2020) at the european conference on machine
learning and principles and practice of knowledge discovery in databases
(ecml/pkdd 2020) (p. 41).

Sturm, B. (2018). What do these 5,599,881 parameters mean?: An analysis of
a specific lstm music transcription model, starting with the 70,281 param-
eters of its softmax layer. In International conference on computational
creativity.

Sturm, B. L., Santos, J. F., Ben-Tal, O., & Korshunova, I. (2016). Music
transcription modelling and composition using deep learning. In Proc.
conf. computer simulation of musical creativity. Huddersfield, UK.

Todd, P. M. (1989). A connectionist approach to algorithmic composi-
tion. Computer Music Journal , 13 (4), 27–43. Retrieved from http://

www.jstor.org/stable/3679551

Yang, L.-C., & Lerch, A. (2018). On the evaluation of generative models in
music. Neural Computing and Applications, 1-12.


