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Abstract. Musical Ensembles have fully connected multiple leader-follower
topologies where the leadership role can change dynamically from one
musician to another. This makes it a complex task for tracking the cor-
rect leader based on audio features such as pitch, rhythm, and ampli-
tude. In this study, we propose ’LeaderSTeM’, a deep learning model to
predict and follow the leader by tempo. We built different models and
evaluated the results for this problem and found the Long short-term
memory (LSTM) models to be most effective. Furthermore, we exam-
ined the hyper-tuning of 3-, 4- and 5-layered LSTMSs to determine the
best possible models.
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1 Introduction

A musical ensemble is a collaborative performance of vocal and/or instrumental
music by a group of musicians and singers. In a jazz or popular music, there are
generally melodic instruments, accompanying instruments providing a harmonic
underpinning, a bass instrument, and a percussionist. Rock ensembles typically
have vocals, keyboards, guitars and a rhythm section composed of a drum kit and
bass guitar (Chang, Livingstone, Bosnyak, & Trainor, 2017). Musicians continu-
ously communicate with each other during a group performance through sound,
body movements, and facial gestures to bring life to their art and to connect with
audience emotion. There is a time-varying leader-follower relationship where the
leader plays a key role in the appropriate functioning of the system (Harrell,
2008). The leader-follower relationship is typical of an inter-connected network
of musicians (Niemeyer & Cavazotte, 2016) (Kawase, 2014).

The motivation for this paper has come from attempting to understand live
human-robot musical ensemble interactions, such as a single robot with three
or four musicians. The robot should respond and synchronize to the human
musicians. To do this effectively they need to observe the tempo, or BPM (beats
per minute), of the musicians in real-time, because most music is played with
some tempo variation.



2 Sutirtha Chakraborty et al.

In the research into musical ensembles there has been little effort in the
literature on identifying the tempo leader in an ensemble who is establishing
the BPM of the combined musical output. This is only now an emerging area
as the field of inter-entity synchronization. This is a difficult problem and the
intention in this paper is to use a machine learning approach to develop this
dynamic 'Leader’ tracker. This algorithm would extract the individual real-time
BPM signals from each instrument along with a set of associated audio features,
and then discern from these at each time interval which instrument track is the
"leader’ that currently dominates the overall representative BPM. This BPM sig-
nal could be used to drive a synchronization algorithm if more than one musical
robot is present.

2 Literature Review

Glowinski et al. (Glowinski, Badino, Ausilio, Camurri, & Fadiga, 2012) studied
an ensemble of a string quartet to understand how the leadership behavior among
musicians related to their non-verbal cues. The used Granger Causality to inves-
tigate how each musician’s behavior was influenced by their distance from other
musicians when choosing their potential leader. Measuring the inter-musician
communication showed, as expected, that the leader had a significant impact on
the interaction of the whole network. Similarly, Timmers et al. (Timmers, Endo,
Bradbury, & Wing, 2014) did a case study on auditory and visual cues within a
string quartet. They repeated the experiment many times on the same musical
piece. They observed that the first Violin player was acting as the primary leader
and the speed of their bow movement during the first onset tone was responsible
for setting the tempo of the whole performance. They also found that visual
gaze is an important feature for establishing the connection in the beginning.
Kawase (Kawase, 2014) investigated the leadership phenomenon by experiment-
ing with six piano players. He created constraints under which musicians could
be compared and evaluated. His study found that the leader’s gaze towards other
musicians was shorter than that of the followers. He also found that before any
tempo changes occurred that it was visual cues that helped them to maintain
the synchrony. Although not entirely relevant, Martin et al. (Martin, Ellefsen,
& Torresen, 2017) used an artificial neural network (ANN) model to create an
ensemble experience using a gesturally-controlled touch-screen interface to make
music. They demonstrated the value of long short-term memory (LSTM) neural
networks to force synchronization among the participants.

While it is clear that gaze and visual cues, or gesture, are a the primary
mode of communication, this work, in contrast, will take a different approach
by relying only on the dynamic relationship between the audio features of the
individual waveforms produced by the ensemble of musicians, and identify the
leader among them. This result would be especially useful in an analysis scenario
where no video or eye-tracking or gestural data is available, but only the audio
data, which is often the case.
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3 Dataset

In this experiment we used the Musdb18 dataset which consists of a total of 150
complete music tracks (Rafii, Liutkus, Stoter, Mimilakis, & Bittner, 2017)(10
hours in total). These are of distinct genres that contain a mix of vocals, drums,
bass, and accompaniment tracks. All tracks are stereophonic as well as being
sampled at 44.1kHz. To replicate an ensemble scenario, we separated the main,
full-mix, track into four stems or individual instrument sub-tracks (drums, bass,
accompaniment, voice). We used PYAudio (Pham, 2006) to capture the tempo,
pitch, and amplitude/volume for each sub-track and the full-mix track in real-
time with a window size of 1024 and hop-size 512 using AUBIO’s (Brossier,
2006) library. For training the various machine learning techniques, the input
included the audio features derived from the four sub-tracks and the BPM of
the full-mix track as shown in Fig.1. The sample code and dataset are available
in the GitHub repository (GitHubRepo, 2020).

our Daaset
e
. INPUT
Voice » | 8PM, Pitch, Volume
Signal Tracking
Algorithms

Fig. 1: Dataset Generation from MUSDBI18 using AUBIO for Machine learning
algorithms

4 Experimental Trails

We split our dataset into training and testing data (8:2 ratio) . To check if there
was correlation in the set of features, we used Principal Component Analysis
(PCA) observing the cumulative value of the variance, it reaches one when all
the features were included. It was decided that there was insufficient redundancy
so that all the features should be used to build the model. Initially, we explored
three different non-linear machine learning models. These were random forest,
Support Vector Machine(SVM), and LSTM. On evaluating all three machine
learning models first of all we found that a two-layered LSTM model performed
much better than both the SVM and Random Forest when using the mean
squared error value (MSE).

We then trained three, four, and five-layered LSTM models to do a compar-
ative study across these models. We used six different hyper-tuning algorithms
to find the best model. The search space explored for the learning rate was 0.001
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Table 1: Experimental Values of different LSTM Models

3 Layered LSTM 4 Layered LSTM 5 Layered LSTM
Tune Algorithm LC;ZZW Unit 1 Unit 2 Unit 3 MSE Le;znténq Unit 1 Unit 2 Unit 8 Unit 4 MSE Legfa”ntzng Unit 1 Unit 2 Unit 8 Unit 4 Unit 5 MSE
At Search 0.082 445 481 37 245 0075 390 391 197 114 271 0.076 238 388 69 141 477 347

Skopt Search 0.0835 457 491 288 273 0.083 433 330 70 9 289 0.083 457 491 288 48 510 290
HyperOpt Search ~ 0.0979 308 500 358 471 0.095 309 352 155 413 292 0.098 450 173 434 424 426 275
BayesOpt Search ~ 0.038 485 375 307 308 0.073 342 509 209 276 279 0.075 439 302 188 226 402 294
TuneBOHB Search 0.0096 294 256 313 504 0.0082 394 407 349 486 514 0.008 177 452 422 470 377 539
Z00pt Seach 006 413 269 160 285 0.08 160 210 305 206 315 0.1 230 185 488 413 114 277

to 0.1 and the number of LSTM units for each layer ranged from 2 to 512.
To perform the intensive computations, we used four CPU cores and a 12GB
NVIDIA Tesla K80 GPU to run the code. We generated a total of 25 samples
for each tuning algorithm, each with 10 epochs. The batch size was 32 for each
case. We chose the best model for LeaderSTeM by comparing the performance
of 18 models generated by each tuning algorithm, as shown in Table 1, using
the mean squared error (MSE). It was found that on the testing dataset, the
best overall was the three-layered LSTM model with hidden nodes of 445, 481,
37 in the first, second, and third layers respectively, having a learning rate of
0.082, and an output layer with one unit. The AxSearch hyper-tuning, based on
Bayesian Optimization generated an MSE of 245 on the test dataset.

5 Results

To illustrate the operation of the LeaderSTeM model we used the mixer-track
of the file A Classic Education — NightOwl’ from MUSDB18. This track was
specifically chosen as it had a significant tempo/BPM changes in the middle of
the song which would clearly demonstrate how the model could adapt to tempo
variations. The BPM, pitch, and volume of each of the four source-separated
sub-tracks of the mixer-track were extracted and fed to our model as input. In
Fig.2(a) four subplots can be seen that show the BPM signals extracted. Each
plot superimposes the AUBIO-identified real-time BPM signal of the different
sub-tracks (in orange) onto the AUBIO-identified mixer-track BPM signal (in
blue). We can observe that at different parts of the song the mixer-track BPM
signal matches more closely with that of the different sub-tracks. Initially, the
mixer-track BPM follows the accompanying track. In the next phase, the mixer-
track BPM significantly slows down. The bass and drum BPM signals produce
similar behaviour to each other, and these then dominate the BPM mixer-track
trajectory. In the last phase, the tempo increases. The vocal track BPM signal is
now primary alongside the drum and bass BPM signal, thus having the greatest
impact on the overall mixer-track BPM.

The output of the LeaderSTeM model BPM output is now shown (blue line)
in the panels Fig.2(b) against the BPM signal of the four sub-tracks (orange
line). The LeaderStem output initially follows the vocals sub-track as the song
starts with a strong vocal amplitude. This contrasts with the identification of the
accompaniment as the leader sub-track. Following this, the model then correctly
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identifies the BPM signal similarity between the bass and voice signals. It outputs
BPM values that are close to those of the BPM signal for the bass sub-track.
When the tempo reduces mid-song, LeaderSTeM was able to identify the tempo
slowdown and followed the BPM signals of the bass and drums. In the last
phase, the model was able to correctly judge the dominant three instruments
(Vocals, Bass, and Drums) and follow the increase in tempo. In summary, while
it was initially unable to find the right sub-track this improved, and afterwards
it maintained tracking correctly.

Aublo s BPM of Mixer-track with dlfferent sub tracks
BPM of LeaderSTeM prediction with different sub-tracks
Mixer Vs Drums Mixer Vs Bass Predicted Vs Drums Predicted Vs Bass
—— Mixer-Track —— LeaderSTeM
—— Sub-Track — Sub-tracks
5w g w :
Mixer Vs Accompany © Mixer Vs Vocals Predicted Vs Accompany  Predicted Vs Vocals
B ”"hw ’ WMWW § o ’LM iMMﬁ
0 5000 10000 15000 5000 10000 15000 0 5000 10000 15 5000 10000 15000
Samples Samples Samples Samples
(a) (b)

Fig.2: (a)Mixer Track vs Sub-tracks BPM signal comparison and
(b)LeaderSTeM Prediction for A Classic Education — NightOwl’

6 Conclusion

To emulate an ensemble scenario this paper used the MUSDBI18 dataset, and
then stems were extracted from it. Using only features derived from the audio
stem sources an investigation into machine learning tools was made. It tested how
well they could identify the dynamic leading instrument among the individual
tracks that contributed most to the representative BPM signal at various times
in the musical piece. The LeaderSTeM machine learning algorithm was observed
as being the best at “following the leader” among the ensemble. This was a
three-layer LSTM with an optimized set of parameters. The result is useful
to robotic-human musical interaction scenarios that requiring real-time BPM
analysis of an ensemble musical outputs.

For future work, we will experiment with a more extensive range of audio
features along with exploring an expanded search space for the model parameter
values. Incorporating data from tracking the visual gaze of the musicians to iden-
tify the leader over time would also be valuable (Bishop, 2019). The integrating
of these visual features representing gestural intent would complement and cor-
roborate the sound features in the dataset and would most likely strengthen the
predictive performance.
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