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Abstract. Can we generate drum synthesizers automatically? We present
an approach for the automatic generation of synthesizer programs for
one-shot percussive sounds. Recent advancements in digital synthesis,
heuristic search, and neural networks can be utilized for sound genera-
tion. Yet the need for data, the problem of open set recognition, and high
computational costs persist as barriers towards the expansion of sound
libraries using these techniques. We generate quick, scalable, percussion
synthesizers using classical signal processing. We train drum classifiers to
find and classify synthesizer programs that mimic percussive sounds. We
use features from Fourier transformations and autoencoder embeddings
to train machine learning classifiers. Manual listening tests of the gen-
erated sounds demonstrates the system can successfully generate drum
synthesizers and categorize drum sounds. To facilitate future research,
we share our curated dataset of free percussive sounds.

Keywords: Automatic Synthesizer design. Machine Listening. Sound
Analysis. Novelty and Originality

1 Introduction

Digital recordings of novel, one-shot1 drum sounds are commonly used in elec-
tronic music compositions. Yet unique drum sounds can be difficult or expensive
to find. By relying on recordings of material drum sounds, artists are limited by
what instruments exist in the material world and whether or not high-quality,
one-shot recordings can be accessed. We believe automatic programming of vir-
tual synthesizers for the creation of novel drum sounds can alleviate these limi-
tations. To this end, we implement a programmable virtual synthesizer of audio,
which we call the virtual synthesizer. We also implement machine learning classi-
fiers for automatic separation of percussive sounds from non-percussive sounds.
To effectively train the classifiers with small datasets, we simplify the represen-
tation of audio data by experimenting with fast Fourier transforms (FFT) and
autoencoder embeddings. We call our system of feature extraction and classi-
fication of sounds the virtual ear. To create a dataset of synthetic drums, the

1A single hit on the drum that captures its capabilities
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Fig. 1: A blueprint of our system which allows each component to be implemented
in a number of ways. Our implementations of this pipeline allow for easy paral-
lelization when needed. This implementation also allows for easy integration of
heuristic search for future works.

Table 1: Curated databases
DB Name Categories
FreeDB Kicks:533 - Snares:372 - Claps:230 - Hats:105 - Other:281

RadarDB Kicks:1054 - Snares:842 - Claps:353
Toms:349 - Hats:1561 - Rims:131 - Shakers:121

MixedDB Kicks:533 - Snares:372 - Claps:230 - Hats:105 - Others:281

virtual synthesizer produces random programs and generates the corresponding
audio. This audio is then categorized by the virtual ear. We save not just the
desirable sounds, but also the programs which generated these sounds, which can
be modified and experimented on by sound designers. In this work, only random
search is used for program generation, but other heuristics can be integrated
for an improved search algorithm in future works. We build generative systems
using different implementations of the virtual ear, and conduct manual, blinded
hearing tests of the generated sounds. Our results are promising as the majority
of sounds generated from our systems are deemed percussive by human listeners.
However, we cannot quantify the novelty of these sounds.

Furthermore, we provide a subset of our curated datasets to facilitate future
research. We curated 3 datasets of one-shot drums which we use to train and
validate drum classifiers. The number of samples per group in these databases
is provided in Table 1. We provide unrestricted access to FreeDB via Zenodo2.
RadarDB cannot be shared directly, we provide the script for its automated

2https://zenodo.org/record/3994999
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creation3. We cannot provide a copy of MixedDB, which is curated from various
sources and personal libraries.

2 Related Works

Numerous deep neural network models have been proposed for the purpose of sig-
nal generation in recent years (Engel et al., 2017; Yamamoto, Song, & Kim, 2020;
Oord et al., 2017; Yee-King, Fedden, & d’Inverno, 2018; Ramires, Chandna, Fa-
vory, Gómez, & Serra, 2020). WaveGans and WaveNet have been subject to sig-
nificant improvements and experiments since their proposal (Engel et al., 2017;
Yamamoto et al., 2020; Oord et al., 2017). Particularly relevant works are the
utilization of variational autoencoders (VAE’s) for generation of percussive sam-
ples (Aouameur, Esling, & Hadjeres, 2019) and generation of percussive sounds
by decoding a small set of latent features (Ramires et al., 2020). Automatic
programming 4 of virtual synthesizers has long been a topic of interest. Genetic
Algorithms (GA’s) have been utilized for the generation of new sounds with var-
ious sound engines (Horner, Beauchamp, & Haken, 1993; Macret, Pasquier, &
Smyth, 2012). A more recent work by Yee-King et al. (Yee-King et al., 2018) used
Long short-Term Memory (LSTM) models and heuristic search to find the exact
parameters used to create a group of sounds. The sounds approximated were
made by the same virtual synthesizer and not with an external source. Esling et
al. used over 10,000 VST synthesizer presets to learn a parameter space which
can be sampled for creation of new audio (Esling, Masuda, Bardet, Despres, et
al., 2019). Here, we work towards the approximation of percussive sounds with
no prior knowledge about the parameter space of a synthesizer.

3 Virtual Synthesizer Design

To create sounds, we build digital synthesizers. We use classical DSP to build
our synthesizer, which allows for quick, offline, and parallel generation of au-
dio signals without the usage of GPUs. We made extensive use of Pippi5 and
SciPy (Jones, Oliphant, Peterson, et al., 2001) libraries. Our virtual synthesizer
contains a set of one or more submodules. Each submodule is a self-contained
noise making unit and creates signals by taking the steps depicted in figure 2.
Submodules have identical sets of parameters, but widely different outputs can
be achieved depending on the values assigned. The set of required parameters
for each submodule is highlighted in Table 2. The sonic output of the virtual
synthesizer is the normalized addition of the output of its submodules. Our
implementation of a synthesizer can have any number of submodules. We call
the number of submodules in each virtual synthesizer the stack size. We call
the sets of parameter values that characterize a synthesizer’s submodules a pro-
gram(analogous to presets and submodules for a VST). Rather than directly

3https://github.com/imilas/Synths_Stacks_Search
4unsupervised generation of source code or programs towards a goal
5https://github.com/luvsound/pippi
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Table 2: Synthesizer submodule parameters. 1015 unique programs are possible.
Each synthesizer can contain any number of submodules

Parameters Value Range Notes and Constraints
Attack 0-3 A-D-S-R values relative
Decay 0-3 relative to A-S-R
Sustain 0-3 relative to A-D-R
Release 0-3 relative to A-D-S

OSC type sine,square,saw -
IsNoise boolean generate noise using

cloud of waveform
Length 0-1 second -

StartTime 0-1 second Length+Start<1
Amplitude 0.1-1 1 = max amplitude

Pitches(notes) list of pitches range of C0(16.35hz) to B9
HP filter Cutoff 0-20000hz -
LP filter Cutoff 20000hz-HP never lower than HP cutoff
Filter Order 4,8,16 butterworth filter order

Pitch OSC
Noise Cloud

LP Filter ADSRHP FilterIsNoise = 0

IsNoise = 1

Fig. 2: High level representation of pre-rendering steps for each submodule. Each
Synthesizer contains 1 or more these submodules. Synthesizer programs set the
number of these submodules and their parameters. The output of a synthesizer
is the normalized addition of all its submodule outputs.

using neural networks for sound synthesis, we generate programs for this vir-
tual synthesizer. Our decision is based on the following factors: (i) Novelty and
Creativity : The goal here is to work with the limitations of any tractable sound
source to create its approximations of a given sound category. We seek to create
novel sounds via artificial, exploratory creativity. Boden defines this concept as
an emergent property of generative work within confined rule sets (Boden, 2009).
An example is the perpetual popularity of 8-bit aesthetics (Collins, 2007). (ii) In-
terpretability : Neural networks are often described as black boxes with uninter-
ruptible weights (Basheer & Hajmeer, 2000). Their highly recursive structure
makes modern explanation methods such as saliency maps unreliable (Rudin,
2019). (iii) Speed of Rendering : Neural network synthesis is costly; Sub 24 khz
sample rates are common in most relevant works (Yamamoto et al., 2020; Oord
et al., 2017; Aouameur et al., 2019; Ramires et al., 2020). This is far below CD
quality sampling rates (Reiss, 2016). At our fixed sampling rate of 48 khz, syn-
thesizers with 8 submodules can create and save 1 second sounds to hard-disk
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Fig. 3: An illustration of the discrepancy between the sounds we use to train
our classifiers and the type of sounds the classifier is expected to classify. N is
the set of percussive sounds a synthesizer is capable of making. The inclusion of
sounds in this group may vary from person to person. Our positive samples, T +,
is a small fraction of a wide variety of percussive sounds that are conceivable.
For T −, we can generate any number of random samples. H is a series of sounds
sent to the ear for classification.

with an average rendering time of 50 milliseconds6. (iv) Flexibility and Scaling :
Probabilistic audio generation is often done sequentially. State of the art, par-
allel wave generation with GANs requires a fixed amount of rendering time for
each time-step (Yamamoto et al., 2020). With our virtual synthesizer, the added
footprint of increasing the length of rendered sounds or higher sampling rates is
relatively minuscule.

4 Virtual Ear

The virtual ear receives sounds and discards those which do not resemble drums.
It then classifies sounds by drum category. Our goal is to produce a virtual ear
that accurately discriminates between percussive and non-percussive sounds, but
is tolerant of novelty. The virtual ear makes two critical decisions:

Decision.1 Could the sound be used as a drum?
Decision.2 If it does sound like a drum, what type of drum should it be?

Decision.1 requires knowledge of what drums do not sound like, or knowl-
edge of an infinitely large set, which cannot be fully represented via examples.
An important consideration is that the source of sounds used for training the
model (organic drum sounds) will be fundamentally different from the source
of unlabeled sounds we wish to categorize (noise from a synthesizer). This issue
is reflective of the open set recognition (OSR) problem (Geng, Huang, & Chen,
2020; Mundt, Pliushch, Majumder, & Ramesh, 2019). We use Figure 3 to high-
light a number of caveats with our training approach. If the sound is deemed
percussive, the virtual ear makes Decision.2 by finding the best drum category

6Using a single process on a Macbook Air 2012 and Ubuntu 18.04
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Table 3: Overview of survey model architectures. Further details in Appendix C
Model Architecture Layout Features

CNN(TPE) CNN(2 channel convolution) -> LSTM(800 hidden states) ->
Linear Layers (shape 400x5)

Spectrogram

FC(TPE) Fully connected Linear layers with shape: 400x10x5x10x5 Spectrogram
E+F(TPE) Fully connected network of size 50x10x2x5 Env. + Freq.

MEM Encoder -> Embedded Spectrogram(size 64) -> Extra-Trees Spectrogram

for the sound. The number of categories available is dependent on the database
of drums used for training. To maximize the transference of knowledge gained
from training the classifiers to evaluation of programs, we need to extract concise
feature sets that capture fundamental characteristics of the data points.

In order to classify sounds, we need to summarize them as features. Various
works have demonstrated effective reconstruction of signals given their Short-
time Fourier Transforms (STFT) (Nawab, Quatieri, & Lim, 1983; Griffin & Lim,
1984). If the STFT of a signal can be used for its reconstruction, perhaps it can
be utilized as a source of fundamental features (Lee, Pham, Largman, & Ng,
2009; Huzaifah, 2017). We defined 3 STFT (or FFT) transformation functions
to capture important features of percussive sounds.

1. Envelope Transformation: Represents changes in loudness for the duration of
the signal. Using STFT we generate a matrix Mi×j with rows i and columns
j corresponding to time steps and frequency bins. Values vi×j indicate the
magnitude of frequency bin j at each time-step i. We approximate the en-
velope of the signal by summing the values of M at each time-step.

2. Frequency Transformation: Similar to envelope calculation, but the summa-
tion is done along the frequency axis. Shorter hop-sizes and wider windows
were used to increase frequency resolution.

3. Spectrum Transformation: Mel Scaled STFT. Values normalized from 0-1.

Another set of features were extracted using the latent embeddings of au-
toencoder networks. Here, an autoencoder is a combination of an encoder which
encodes spectrograms into a lower dimension and a decoder which tries to decode
these embeddings into the original data. We trained a number of autoencoders
with spectrogram transformations, and used the encoder from the autoencoder
network with the lowest decoding loss as a feature extractor 7. Latent embed-
dings at the bottleneck layer of our best spectrogram autoencoder are used as
features for sound categorization.

To automatically learn from the extracted features, two groups of virtual
ears are implemented: two phased ears (TPEs) and Mixed Ear Models (MEMs).
For TPEs, we train multiple neural network architectures using different sub-
sets of the FFT features to specialize in Decision.1 or Decision.2 and combine
them to make decisions sequentially. To train TPEs for Decision.1, we use all

7Appendix D has further details on the hyperparameter search process
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Fig. 4: Visualized representation of FFT features for a randomly synthesized
noise. More examples in Appendix B.

drums in RadarDB and FreeDB and 6000 examples of virtual synthesizer noise.
For Decision.2, we combine the two databases and merge toms into kicks and
rims/shakers into “other”. We trained the TPE models with 80% of this dataset.
Using the remaining 20% of sounds, we achieved 98% accuracy in Decision.1 and
82% accuracy in Decision.2 with our best models. These accuracy numbers are
weak as we did not account for category sizes or cross validate.

MEMs learn from autoencoder embeddings and envelope features and give si-
multaneous answers to both decisions. We use kicks, snares, claps, and hat sounds
from RadarDB and FreeDB as well as 1000 examples of synthesized noise to train
MEMs. Using 10-fold cross validation, our best MEM (an ExtraTrees Classifier)
achieves the average f1-score of 92% in 5-way sound classification (4 drum cate-
gories + synthesized noise). Detailed measurements and model descriptions for
TPEs and MEMs can be found in table 3 and Appendix C.

5 Building and Evaluating The System

High accuracy in detection of organic drums vs synthetic sounds does not nec-
essarily make an ear more suitable for our generative system. Perfect detection
would create a system which generates nothing. We cannot know the true size of
H+ (see Figure 3) without exhaustive manual hearing tests. We conduct blinded
hearing tests of two generative systems. For Decision.1, a network which learns
from spectrogram data utilizing CNN and LSTM layers is used. For Decision.2,
we categorize the drum types with 3 different models: FC (Fully-Connected ar-
chitecture and spectrograms for learning), CNN (CNN and LSTM layers with
spectrograms), and E/F (Fully-Connected architecture with frequency and en-
velope features). The MEM system uses our best MEM, which simultaneously
classifies sounds as drums and categorizes them.

The TPE system produces samples in the following categories: “snare”, “kick”,
“hat”, “clap” and “other” (combination of rims, shakers and unusual percussive
sounds). The MEM system does not output the “other” category, yet the op-
tion is available to surveyors when categorizing sounds manually. Both authors
categorized a subset of the results without knowledge of the assigned labels. Ad-
ditionally, each responder has the option of labeling samples as “bad” for samples
that they deemed not percussive.
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Table 4: Fleiss’ kappa coefficients as a measurement of agreement between per-
sons (H+H) and persons with models.
System’s Ear Type Drop Rule Size HvH H+FC H+CNN H+E/F H+MEM

TPE No Drops 257 0.37 0.35 0.36 0.36
All Bad and Other 154 0.47 0.59 0.54 0.50

MEM No Drops 300 0.34 0.25
All Bad and Other 120 0.62 0.59

The percentage of sounds labeled as “bad” by the authors is a measurement
of success with regard to Decision.1. We measure success with regard to Deci-
sion.2—the reliability of agreement between persons and drum categorization
models—via the Fleiss’ kappa coefficient (Fleiss, 1971). The value of 0 or less for
this coefficient indicates no agreement beyond random chance, and the value of
1 indicates perfect agreement. We re-measure this coefficient after dropping all
“bad” and “other” samples.

The majority of sounds created by our system are deemed percussive by
both surveyors. 30% of the outputs from the TPE system and 50% of the MEM
system outputs are deemed as non-percussive by at least one person. This leaves
much room for improvement with regards to Decision.1. Our performance with
regards to Decision.2 is promising as we achieve moderately high agree-ability
scores after dropping “bad sounds” and “other”. Despite the drawbacks, the MEM
pipeline remains competitive while working with a fraction of the features to
learn from and simultaneously making both decisions. Extended survey analysis
is provided in Appendix E. Appendix A provides access to generated sounds.

6 Conclusion, Validity, and Future Work

Conclusion: We built a generative system for creation of percussive sounds
via automatic programming of virtual synthesizers. We verified its results with
human listeners. Our work enables not only the creation of new libraries of
percussion sounds, but new synthesizer programs which can be modified and
studied. Manual listening tests revealed much room for improvement, particu-
larly with accurate separation of percussive sounds from the infinitely large set
of non-percussive sounds. We had some success in our utilization of latent repre-
sentations of autoencoder networks as low-dimensional representations of short
sound files.
Threats to Validity: The lack of consistency in training and accuracy measure-
ments makes comparisons between TPEs and MEMs difficult. Many arbitrary
design decisions have been made, particularly in the design of our TPE classi-
fiers and selection of datasets for training and testing. We cannot quantify the
novelty of our results. Our requirement for training data remains high.
Future Work: Effective implementation of few-shot learning is a priority. Pro-
gram generation may be improved by reinforcement learning and other heuristics.
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Appendices

A Dataset Details and Downloads

A.1 Download Instructions

FreeDB, survey data, and randomly generated sounds can be downloaded from:
https://zenodo.org/record/3994999

RadarDB requires lengthy downloads and processing. The script for its auto-
mated creation can be found under the “getting_data” directory of the project:
https://github.com/imilas/Synths_Stacks_Search
Also included on the project page is our full source-code, models, and extra out-
put examples.

The latex source for this paper can be found at:
https://github.com/imilas/CSMC-MuMe-2020

A.2 Details

Our data sources are a large set of 2 second or shorter drum samples aggregated
from personal libraries, free drum kits from the sample-swap project 8 which we
organized into 5 groups, and a large set of drum sounds aggregated from royalty
free sources such as music radar 9. We put together 3 databases of drums using
these sources. We also created a database of synthetic noise from 1, 3, and 5
stacked virtual synthesizers. Specifications about our datasets can be found in
table 5.

We prioritize making generalizable tools which can learn from and produce
a variety of different sounds. We utilize these databases depending on the task
at hand. At times, we merged or purged drum groups to simplify tasks.

Table 5: Curated databases, including NoiseDB
DB Name Categories
FreeDB Kicks:533 - Snares:372 - Claps:230 - Hats:105 - Other:281

RadarDB Kicks:1054 - Snares:842 - Claps:353
Toms:349 - Hats:1561 - Rims:131 - Shakers:121

MixedDB Kicks:533 - Snares:372 - Claps:230 - Hats:105 - Others:281
NoiseDB 1 Stack:2000 - 3 Stacks:2000 - 5 Stacks:2000

8https://sampleswap.org/
9https://www.musicradar.com/
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B Audio Transformation Functions

Figure 5 contains the graphed representation of features extracted for 3 different
samples. Sample a is a recorded hat from our database. sample b is an example
of randomly generated noise with percussive qualities that we found suitably
similar to a snare sound. Sample c is an example of a randomly generated noise
where the spectrum features are necessary for proper classification.

Visual Representation of Raw Features
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(a) Recorded hat sample
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(b) Randomly generated audio with percussive qualities, resembling a tight snare
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(c) A randomly generated noise with a percussive envelop but non-percussive frequency
features (modulated pitch)

Fig. 5: Graphed representation of features extracted for 3 different samples.
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C Virtual Ear Classifier Definitions

C.1 Two Phased models

Using the described features, we trained several neural network models for de-
cision 1 and 2 with the pytorch library. The task of decision 1 is to separate
drums from not-drums (DrumVsNotDrum, or DVN). The task of decision 2 is to
categorize drums and percussion (DrumVsDrum, or DVD). We kept our feature
space small, making it viable for feature selection and model design to be done
on a trial and error basis. For all models, accuracy is calculated by prediction
of all test dataset labels and the loss function and optimizer are Categorical
Cross-Entropy and Adam respectively. Training continues until no reduction in
loss and accuracy is observed in 10 epochs. All activation functions are PReLU:

1. FC-DVN: Fully connected network trained on Envelope features, reaching
97% accuracy on our test data for decision1. With size of 10x5x10.

2. CNNLSTM-DVN: A combination of CNN and LSTM models, where the
CNN model extracts higher level features that are fed temporally to an
LSTM cell. This model is trained on spectrum data and reaches 98% accuracy
on our test set. Its structure is the combination of a CNN with 2 output
channels and kernel size (7, 3); Followed by an LSTM model of hidden size
800 and a fully connected layer of size 20x2.

3. E/F-DVD: A fully connected model trained on a concatenation of envelope
and frequency features. Reaching 80% accuracy for 5-way drum categoriza-
tion in decision2. Size of 50x10x2x6.

4. CNN-DVD: A CNN model trained on Spectrum features. Reaching 82%
accuracy in a 5-way drum categorization in decision2. A combination of a
CNN model with output channel size of 4, kernel of size of 5, another CNN
model with output channel size of 8 and kernel of size 3. Followed by a fully
connected network of shape 100x20x6.

5. FC-DVD: Fully connected 3 layer neural net with 78% accuracy for 5-way
drum categorization in decision2. Size of 400x200x50.

Parameters are hand-picked and un-tuned.

C.2 Mixed Ear Models

We compare the performance of our models before and after the addition of enve-
lope features (a vector of size 10) to the feature space. We reuse the model trained
on MixedDB as our embedding feature extractor. We use a combination of
RadarDB, FreeDB and NoiseDB for training. We only focus on clap,hat,kick,snares,
and synthetic noise groups for measuring effectiveness to prevent class overlaps
as much as possible. We also exclude samples longer than 1 second, to exclude
potentially mislabeled data. Our final training database for mixed ear models is
described in table 7.
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Model name Tuned Parameters† Used Weights? ‡

Support Vector Classifier (SVC) Gamma:0.001, C:100, kernel:rbf Yes
LinearSVC C:10 Yes
K Nearest Neighbors Num. Neighbors:30 No
Random Forest Classifier Num Estimators:500 Yes
Extra Trees Classifier Num Estimators:1100 Yes
Table 6: Models implemented for comparison using envelope and embedded
features.

† Tuned parameters values are based on grid-searching for best f-score. Param-
eters not mentioned have neither been tuned nor changed from scikit-learn’s
default values (as of version 0.23)
‡ Class weights are used unless not applicable to classifier.

Model Selection Using our encoding and envelope features to represent audio,
five classification models were trained for the task of categorizing the five differ-
ent sound groups. For hyper-parameter optimization, the models were trained
using 5-fold cross validation and 80/20 train-to-test ratio. The F-Score result
of each cross-validation is the unweighted average F-Score of all groups. For
inter-model comparisons, the procedure is the same except 10-fold cross vali-
dations are used. Our models were derived from scikit-learn’s implementations
of these classifiers (Pedregosa et al., 2011). Before inter-model comparisons, we
conducted a grid-search for each model on at least one of its possibly decisive
hyper-parameters. The classifiers and other notable specifications are presented
in Table 6.

DB Name kick snare clap hat Synthetic Noise
MixedEarDB 1334 1035 401 1275 1000

Table 7: A database put together by combination of RadarDB, FreeDB and
NoiseDB
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Cross Validation F-Scores For All Sound Groups
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Fig. 6: Boxplots visualizing the F-Score results for each cross-validation. The
individual scores, means, medians, standard-deviation and outliers are depicted.
Envelope features improve classification accuracy.

Cross Validation F-Scores For Drum Vs Not-Drum
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Fig. 7: F-Score results for each cross-validation. Models perform better as there
are less categorization groups.
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Classification Report for DvDvN and DvN
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Fig. 8: F-Scores and confusion matrix of ExtraTrees model for both DvDvN and
DvN.
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D AutoEncoder Structures and Hyper-Parameter
Optimization

Within the context of machine learning, a model’s hyper-parameters are fixed
parameters which are set before the training begins (e.g number of layers, size
of layers, loss function) and are not learned during the minimization proce-
dure (Bengio, 2000). To assist us with the construction of our model, we de-
fined a number of possible choices for the architecture of our model and audio-
transformers and used hyper-parameter optimization to extract promising sets
of values 9.

The list of possible choices for the selected hyper-parameters can be found
in table 9. We included not only model parameters but also spectrogram trans-
formation parameters within this search space, as GPU accelerated FFT calcu-
lations allows ad hoc audio transformations to take place parallel to the train-
ing process. We implemented 3 base models which are affected by these hyper-
parameters. The “Model Type” parameter dictates whether CNN or fully con-
nected models are selected; If a “fully connected” model is selected, the “hidden
layers” parameter selects between the two implementations. The specifications
for these models can be found in tables 11, 12 and 10.

Using the optuna optimization tools (Akiba, Sano, Yanase, Ohta, & Koyama,
2019), we conducted 500 search trials. The trial’s success is measured in their
final loss value, calculated by applying the model to the test data-set. Each trial
consisted of 20 epochs of training.

Hyper-Param. Value
Model Type CNN
Optimizer Adam
Hidden Layers Not Applicable
Learning Rate 0.001145
Frequency Bins 30
Time Steps 20
Latent Size 64
Regularization 3.25−6

Dropout Rate 0.5
Table 8: Top performing hyper-parameter set
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Hyper-Param. Description Values Distribution
Model Type Affects encoder’s first hidden layer CNN,FC Categorical
Optimizer Updates network’s weights based

on loss
Adam,SGD Categorical

Hidden Layers Extra hidden layer for the Encoder True,False Categorical
Time Steps Temporal granularity of the spec-

trogram. Affects FFT windowing.
10,20 Categorical

Learning Rate Optimizer’s learning rate 1−4 ... 1−1 Uniform
Frequency Bins Number of spectrogram frequency

bins
10, 30,60 Categorical

Regularization L2 regularization parameter. Penal-
izes large weights to prevent overfit-
ting

1−6 ... 1−1 Uniform

Latent Size Size of bottle neck layer or number
encoded features

8,16,64 Categorical

Dropout Rate Random zeroing of activations be-
tween layers to prevent over-fitting

0,0.5,0.1 Categorical

Table 9: The Hyper-Paramter space in which the optimization was conducted.

Layer-# Out Shape Param Num Details
Conv2d-1 [-1, 8, 30, 20] 208 Encoder’s input

Num. Channels:8
kernel:5x5
stride:1
padding:2

ReLU-2 [-1, 8, 30, 20] 0
MaxPool2d-3 [-1, 8, 15, 10] 0 kernel:5x5

stride:2
Dropout-4 [-1, 8, 15, 10] 0
Linear-5 [-1, 8] 9,608 Encoder’s output
Linear-6 [-1, 256] 2,304 Decoder’s Input
Dropout-7 [-1, 256] 0
Linear-8 [-1, 600 ] 154,200 Decoder’s output
Table 10: CNN model design with latent size of 8. 30 and 20 are the assumed
frequency bins and step size. Total number of parameters is 166,320.

Layer-# Out Shape Param Num Details
Linear-1 [-1, 128] 76,928 Encoder’s input
Dropout-2 [-1, 128] 0
Linear-3 [-1, 8] 9,608 Encoder’s output
Linear-4 [-1, 128] 2,304 Decoder’s Input
Dropout-5 [-1, 128] 0
Linear-6 [-1, 600 ] 77,400 Decoder’s output
Table 11: Fully connected model with only 1 hidden dimension for encoder and
decoder. Designed assumes latent size of 8. 30 and 20 are the assumed frequency-
bins and step-size values. Total number of parameters is 156,512.
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Layer-# Out Shape Param Num Details
Linear-1 [-1, 128] 76,928 Encoder’s input
Dropout-2 [-1, 128] 0
Linear-3 [-1, 32] 4,128
Dropout-4 [-1, 128] 0
Linear-5 [-1, 8] 9,608 Encoder’s output
Linear-4 [-1, 32] 2,304 Decoder’s Input
Dropout-5 [-1, 32] 0
Linear-4 [-1, 128] 2,304
Dropout-5 [-1, 128] 0
Linear-6 [-1, 600 ] 77,400 Decoder’s output
Table 12: Fully connected model with 2 hidden dimensions for encoder and
decoder. Designed assumes latent size of 8. 30 and 20 are the assumed frequency-
bins and step-size values. Total number of parameters is 163,232.
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Fig. 9: Sliced plot depicting the correlation between hyper-parameters and loss
values. The color-scale shows the number of times each parameters has been used
in a trial. Our sampling algorithm aims to utilize spaces with higher potential
more often.
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E Survey Details

Details of survey responses are presented in figures 10 and 11. The surveys were
done blinded with the two authors assigning categories to unlabled sounds.

Category Assignment Frequency For TPE Survey
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Fig. 10: Frequency of assigned labels by persons vs the true number of labels
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Fig. 11: Frequency of assigned labels by persons vs the true number of labels


