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Abstract. Many of the music generation systems based on neural net-
works are fully autonomous and do not offer control over the genera-
tion process. In this research, we present a controllable music genera-
tion system in terms of tonal tension. We incorporate two tonal tension
measures based on the Spiral Array Tension theory into a variational
autoencoder model. This allows us to control the direction of the tonal
tension throughout the generated piece, as well as the overall level of
tonal tension. Given a seed musical fragment, stemming from either the
user input or from directly sampling from the latent space, the model
can generate variations of this original seed fragment with altered tonal
tension. This altered music still resembles the seed music rhythmically,
but the pitch of the notes are changed to match the desired tonal tension
as conditioned by the user.
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1 Introduction

Automatic music generation systems date back centuries. For instance, one fa-
mous example dates back to the 18th century, when people played the musical
dice game to generate new music using a different (probabilistic) combination
of musical bars (Herremans, Chuan, & Chew, 2017). Deep learning has caused a
steep increase in popularity in this ancient field (Huang et al., 2019). However,
giving the user high level control over the music that is being generated is still to
be explored. When we allow for controllability, the resulting system can be used
for narrative purposes such as film and game music. In this paper, we offer such
a controllable system, with a focus on an important aspect of music: tension.

2 Related Work

A lot of work has been done on music generation systems in the last few decades.
We refer the reader to Briot (2020); Herremans, Chuan, & Chew (2017) for a
more complete overview. When we are able to control certain aspects of the
generated music, we open up opportunities for co-creation between artist and
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machine. When considering high level controls for music generation, one particu-
lar feature of interest is tonal tension, which is strongly related to emotion (Costa
& Nese, 2020; Meyer, 1956). Controlling the tension gives us a way to control
part of the affect in generated music. Tension in music often endows a feeling
of cohesion, e.g. one might see two music phrases with the first one exhibiting a
rise in tension followed by a phrase with a release in tension.

When it comes to generating music conditioned by tension, the existing re-
search is limited. In a system by M. Farbood et al. (2007), a user-inputted
harmony line guides the generated chord progressions. In another system, Mor-
pheuS (Herremans & Chew, 2019) uses a variable neighborhood search opti-
mization algorithm to generate music with specified tonal tension shapes. Mor-
pheuS morphs the pitches of an existing input piece so that the resulting piece
matches a given tonal tension shape, while preserving the musical structure (i.e.
repeated patterns). Williams et al. (2017) proposed a neural network to adjust
five musical features so as to generate music with the widest spread of stimuli in
the valence-arousal space. Other related research uses long-short term memory
(LSTM) networks to generate a tension profile first and uses this to condition the
music generation (Verstraelen, 2019). The author reports the generated tension
profile does not work as well as the template tension input. In Tan & Herremans
(2020), Music FaderNets are used to change the amount of arousal in short, gen-
erated, musical fragments. In the current research, we aim to further improve
the state-of-the-art by proposing to integrate two tonal tension measures into a
variational autoencoder model to change the tonal tension of a seed fragment,
while keeping the seed music rhythm mostly unchanged.

3 Method

3.1 Tension Measures

Musical tension may come from a variety of sources such as tempo, rhythm
and timbre (M. M. Farbood, 2006; M. M. Farbood & Price, 2017; Herremans,
Yang, et al., 2017). In this work, we focus on tonal tension, measured with a
model based on the Spiral Array theory (Chew, 2002, 2014). The Spiral Array
is a three-dimensional geometrical model which represents the tonal space. It
consists of three spirals, one that represents the position of all pitches, one for
chords, and one for keys. Within this geometrical space, a closer tonal distance
results in a closer geometrical distance.

Herremans & Chew (2016) developed a model for tonal tension based on the
Spiral Array. This model captures three aspects of tonal tension: cloud diameter,
tensile strain, and cloud momentum. In this paper, we focus on the first two.

The cloud diameter captures how “tonally close” the pitches are in the
tonal space, i.e. tension in terms of dissonance. To calculate this, we split our
musical piece into windows (or clouds of notes). For each window, the cloud
diameter represents the largest distance between notes of the cloud. A moving
average window of one quarter note is used to smooth the diameter curve and
prevent abrupt changes from one 16th note to another. The same applies for the
tensile strain defined below.
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We also calculate the tensile strain for each cloud of notes. This is defined
by the distance between the geometric gravity point of all the pitches in the
cloud (i.e. the center of effect). and the geometric position of the key of the
piece.

3.2 Training data

A total of 7,289 MIDI files were selected from the LMD-matched dataset (Raffel,
2016) with the tag “pop” as calculated by (DuBreuil, 2020). The Midi-Miner tool
(Guo et al., 2019) was used to extract both the melody and bass tracks from the
MIDI files, and subsequently calculate two tonal tension measures described in
the previous section. After that step, a total of 3,457 files are valid (i.e. contain
both melody and bass track) to use as training data. The melody and bass track
are both monophonic after preprocessing by Midi-Miner. A bass track is included
to make the harmony progression clearer and the tension more perceptible. Each
song was divided into several four-bar long fragments with both a melody and
bass track, resulting in 44,900 four-bar long fragments. All of the songs were
first transposed to C major or A minor (depending on their mode) and the key
position keypos of all the songs is set as C major to calculate the tensile strain
measure. It should be noted that the A minor keypos can also be used if the key
of the song is given to the model, which is not the case here.

The input for the variational autoencoder (VAE) model is a 64×89 piano roll,
whereby 89 is the feature dimension and 64 is the time dimension. One time step
accounts for a 16th note, and 64 time steps equal four bars length in 4/4 meter.
The 89 dimensions are comprised of four feature sets: melody pitches, melody
onsets, bass pitches and bass onsets. The melody’s pitches are represented as a
74-dim one-hot vector in the MIDI pitch range of [24, 96]. Pitches outside of that
range will be omitted so as to focus on the most frequently occurring pitches. The
last dimension of melody pitch vector marks a rest note. The melody’s rhythm
is also represented by a one-hot vector in which 1 represents a new note at that
time step and 0 no new note. The bass’ pitch is represented as a 13-dim one-hot
vector which maps to 12 pitch classes plus a rest note (the last dimension). The
bass’ rhythm representation is similar to the melody’s rhythm representation.

3.3 Model Details

The model is shown in Figure 1. A VAE (Kingma & Welling, 2013) encoder
parameterised by φ is used to map the input piano roll x to a latent space z.
The decoder parameterised by θ maps z to 6 separate outputs [y1..y6]. [y1..y4] is
the reconstruction of the input x which includes four feature sets. The original
VAE loss is the reconstruction loss minus the KL divergence of the unit Gaussian
prior p(z) and the posterior distribution qφ(z|x). β is used to change the balance
of reconstruction loss and the Kullback–Leibler divergence loss.

Lvae = Lrec(θ, φ, x)− βDKL(qφ(z|x)||p(z))
= Eqφ(z|x)(log pθ(x|z))− βDKL(qφ(z|x)||p(z)) (1)
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In addition to the original VAE loss, the tension loss based on the predicted
tension y5 and y6 are added, which are the tensile strain output and cloud diame-
ter output respectively. tensile strain(x) and diameter(x) are tension measures
calculated from the input x by the spiral array theory. MSE is the mean square
error loss. The tension loss is defined by:

Ltension = MSE(tensile strain(x), y5) +MSE(diameter(x), y6) (2)

The total loss for the model is hence given as:

Ltotal = Lvae + Ltension (3)

A two layer gated recurrent unit (GRU)(Cho et al., 2014) with 256 nodes
is used in both the encoder and decoder. In the decoder, the latent variable
is repeated for 64 timesteps to feed into the two GRU layers then followed by
two dense layers for each of the six outputs. β is set to 0.006 with KL anneal-
ing (Bowman et al., 2015) of an increase of 5e-7 for each batch until 0.006. The
training, validation and test dataset split ratio is 0.8, 0.1, 0.1 respectively. The
Adam optimiser is used with a start learning rate of 0.001. The model’s test set
loss is used for early stopping to mitigate overfitting.

Fig. 1. Proposed model architecture. The input is a 64*89 piano roll with melody and
bass tracks, and the output includes the reconstruction of the piano roll and the tension
measures.

4 Experiment and evaluation

In this section, we first compare the loss of the proposed model with that of
models that do not output tension measures. Then we explore the latent space
and identify four latent vectors which allow us to control the tension direction or
overall tension level of the generated music. The effect of those tension vectors is
validated and finally, possible applications of those latent vectors are discussed.

4.1 Model loss comparison

We compare the proposed model with several variants. The baseline model sim-
ply reconstructs the input piano roll. Other variants of the model jointly learn
to generate tension values by incorporating this information during the model
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training. Each model was run five times and the result for the best run was used
as shown in Table 1. Please note that additional loss terms were added for the
cases in which tension was present. The KL loss is weighted by β = 0.006 in
the total loss. When learning to predict tensile strain, the model bass pitch loss
decreased. When predicting both the tension measures, the rhythm loss does not
change much compared to the baseline model.

Model Total loss Melody pitch Melody rhythm Bass pitch Bass rhythm Tensile Diameter KL

Baseline 2.025 0.5335 0.1723 0.4120 0.1463 NA NA 128
Added ts 2.0816 0.5457 0.1737 0.4080 0.1533 0.049 NA 126
Added cd 2.1942 0.5304 0.2998 0.41 0.1551 NA 0.1244 129
Proposed 2.2334 0.5405 0.1967 0.3994 0.1520 0.0454 0.1197 129

Table 1. Model loss with different conditional outputs. The baseline model only re-
constructs the input piano roll, the other models generate not only the reconstructed
input, but also additional features such as tensile strain (ts) and cloud diameter (cd).
The proposed model learns to generate two tension measures along with reconstructing
the input piano roll.

4.2 Identifying tension feature vectors

We are interested in using the latent space to manipulate the tension of the gen-
erated music. To understand how certain aspects of tonal tension are captured
by the latent variables in our model, we have identified two types of latent fea-
ture vectors that we can use to change the music tension learned in the model
to create specific manipulations of the generated music tension. One type al-
lows us to control the evolution of the tension direction from the beginning
of the 4 bar fragment to the end. The other controls the overall tension level
throughout the 4 bars. We first assign tension class labels to our music frag-
ments (upwards/downwards tensile strain/cloud diameter and high/low tensile
strain/cloud diameter). To assign the first pair of labels, the correlation between
the tension throughout the fragment and a straight line that goes through (0,0)
to (1,1) with slope of 1 is calculated. For the second pair of labels, the 2-norm
of difference of the tension value and a threshold value is calculated. Differ-
ent thresholds for the correlation and 2-norm are used to select around 1,000
samples for each of the class labels. We adopt an approach similar to (Hou et
al., 2017) to identify the feature vectors. Four latent feature vectors are iden-
tified: tensile strain direction, tensile strain level, cloud diameter direction,
and cloud diameter level.

4.3 Validation of tension feature vectors

In this subsection, we evaluate the effectiveness of the four feature vectors iden-
tified in the previous section and how they interact with each other.

Influence of each tension feature vector We random sampled 10,000 z from
the latent space to conduct the following experiments. First we add the four
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different tension feature vectors multiplied by a scaling factor to the original
sampled z and then decode from this new latent vector. We expect that: a) the
tension of the generated music should change according to the definition of the
chosen tension feature; b) the generated music should keep the original rhythm
and not much changed compared with the original music as tonal tension is not
influenced by rhythm.

Figure 2 shows the influence of adding different scaled tension direction fea-
ture vector to the latent space of each sample from the selected dataset. The
tension upward ratio is calculated by the number of generated pieces with with
upward tension divided by the total number of generated pieces. From the most
left figures, we can see that the upward ratio of those tension measures increases
with a larger scaled feature vector added to the original latent vector. These
results confirm that adding this vector to the latent space has a significant influ-
ence on both the tensile strain and cloud diameter. In the middle graphs, we see
that the change in melody rhythm by adding the tensile strain direction feature
vector is small, while the cloud diameter direction change the melody rhythm
is slightly higher. The bass rhythm F-score does not change much compared to
the bass pitch accuracy and even less than the melody rhythm F-score.

From these results, we postulate that tensile strain direction changes the
harmony progression and keeps the rhythm, while the cloud diameter direction
adds/reduces notes with high tension to the melody resulting in a rhythm change.
This was equally confirmed for the tensile strain level and cloud diameter level
in Figure 5 in Appendix.
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Tension direction ratio and pitch accuracy/rhythm fscore comparison

Fig. 2. Tension direction ratio and pitch accuracy/rhythm F-score comparison with
scaled direction feature vectors. The pitch accuracy change is higher than the rhythm
F-score change, and the melody rhythm is more affected by than the bass rhythm.

Interaction among feature vectors We also explored the interactions be-
tween different tension feature vectors so as to find out how much they can influ-
ence the tension output controlled by the other feature vector, as well as the func-
tion they play in the generation of music. In particular, the interaction between
tensile strain direction and cloud diameter direction is explored in order to
examine if applying the tensile strain direction vector can change the cloud
diameter prediction and vice versa. In Figure 3, the tensile strain direction or
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cloud diameter direction with varying scaling factors are added to the latent
space z and the tensile strain/cloud diameter upward ratio is shown. A change
of the scaling factor for tensile strain direction does not affect the cloud di-
ameter upward ratio a lot, however, the cloud diameter direction changes the
tensile strain upward ratio more. This shows that applying a change in tensile
strain does not necessarily change the cloud diameter of the output, and a change
in the cloud diameter of the output is more likely to change the tensile strain,
which can be explained by their definition (Section 3.1). A similar analysis of
the tension level feature vector can be found in Figure 6 in Appendix.
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Fig. 3. Tension direction changes by varying the applied scaled
tensile strain direction or cloud diameter direction. The upward ratio is calcu-
lated by the number of the output with tension upward shape divided by the total
number of samples.

We also performed a number of experiments to compare the pitch distribution
of the original music as well as the changed versions. In Figure 4, the pitch distri-
bution of the original music and the music with added 6∗tensile strain direction
is compared. The frequency of note C and G decreases and note A, E, D occurs
in a much higher proportion in the music with tensile strain upward shape.
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Fig. 4. The pitch distribution of the original music and music with upward tensile
strain direction. The number of occurrences of both notes C and G drops and of notes
A, E, D rises significantly in the second two bars of the tensile strain upward music
compared to the original music.

In addition to the feature vector identified, our proposed method can change
the tensile strain or cloud diameter into an arbitrary shape if a tension vector
with a specific shape defined and identified. To validate this, a �� shape tensile
strain attribute vector was found. Adding this scaled vector to the latent space



8 Rui Guo et al.

allows us to generate music with a tensile strain shaped in the form of �� or
��.

Musical pieces A demonstration of modifying the music tension by adding the
tensile strain direction and cloud diameter level to the latent space is shown
in Figure 7 in the Appendix. Although this model can only output 4 bar long
music, it can be used to create different variations within a larger musical piece.
For instance, we can generate the first 8 bars of music by adding the scaled
tensile strain direction vector to the latent space of given input/sampled music,
and then generate another 8 bars by first adding randomly scaled
cloud diameter level to the first generated 8 bars’ latent space vector. In this
way, a variation of arbitrary length can be generated, which still sounds coherent
to the other fragments as the same seed is used. The reader is invited to listen
to some generated fragments and their tension figures at https://ruiguo-bio

.github.io/tension vae.github.io and explore our online colab notebook
https://github.com/ruiguo-bio/colab tension vae.

5 Conclusion

We propose a generative VAE model to control the tonal tension in generated
music. Through experiments, we have shown that our system can modify the
tonal tension in generated music based on either a existing or a newly sampled
seed fragment. We have successfully identified “tension feature vectors”, which
can achieve different transformations of the output music by adding the scaled
tension feature vector to the latent space. In our experiments, we show the fol-
lowing: 1) By adding a scaled tension feature vector to the latest space variables
of the seed music, we can generate music with increasing tension, both in terms
of tensile strain as well as cloud diameter (depending which tension feature vec-
tor is used); 2) Using a similar method we can also increase or decrease the
overall increase or decreased tension level 3) Additional tension feature vectors
can be found that can realise different shapes of tension in the generated music.
4) The bass pitch loss becomes less by incorporating the tension strain feature
into the model.

In the future work, we would like to explore the inclusion of more musical
tension factors. Besides the two tension measures used in this research, musical
tension is also related to rhythm, timbre and many other factors. Meaningful
musical properties (Wang et al., 2020) can be fed into the system so as to further
control the music generation. An interactive tool will be helpful to compose music
by drawing tension. By using this tool to generate different variations to form
a complete piece, we will examine how this affects the long-term structure and
coherence of the generated music.
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Tension level ratio and pitch accurac /rh thm fscore comparison

Fig. 5. Tension level and reconstruction accuracy change comparison by adding dif-
ferent scaled tensile strain level or cloud diameter level to the latent space of 10,000
random samples of the dataset. The high level ratio of tensile strain and diame-
ter correlated with a larger scaling factor. The rhythm F-score is much less affected
than the pitch accuracy vector, and cloud diameter level changes rhythm more than
tensile strain level.
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Fig. 6. Tension level changes by adding only one of the scaled tensile strain level
or cloud diameter level to the latent space. The high level ratio is calculated by the
number of the output with tension high level divided by the total number of samples.
The scaled cloud diameter level changes the tensile strain level more than the the
reverse, which can be explained by their definition.
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Fig. 7. Music variations generated by changing tensile strain direction and
cloud diameter level and their tension predictions. The top staff is generated mu-
sic by sampling the latent space, the second and third staff is the music changed by
adding/subtracting 6 ∗ tensile strain direction vector to the latent space of the orig-
inal sample, and the fourth and fifth staff is music changed by adding/subtracting
3 ∗ cloud diameter level vector to the latent space of the original sample. The corre-
sponding tension for those five staff is right side of the figure. The music generated by
adding 6 ∗ tensile strain direction to the latent space changed its beginning harmony
to C major and the harmony in the last two bar changes to A minor, and reverse is
for the negative scaled −6 ∗ tensile strain direction music. The cloud diameter level
up version has more notes increasing the tonal tension of the whole piece, and the
diameter level down version has less tension by reducing the notes with higher ten-
sion. This shows the change of cloud diameter level add/reduce the density of notes
to increase/decrease the cloud diameter, resulting in the change of rhythm. This phe-
nomenon is the same when we change the cloud diameter direction before. Although
the cloud diameter definition does not contain rhythm information explicitly, more or
less notes with higher tension will change rhythm as result.
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