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Abstract. The automatic composition of music with long-term struc-
ture is a central problem in music generation. Neural network-based mod-
els have been shown to perform relatively well in melody generation, but
generating music with long-term structure is still a major challenge. This
paper introduces a new approach for music modelling that combines re-
cent advancements of transformer models with recurrent networks – the
long-short term universal transformer (LSTUT), and compare its abil-
ity to predict music against current state-of-the-art music models. Our
experiments are designed to push the boundaries of music models on
considerably long music sequences – a crucial requirement for learning
long-term structure effectively. Results show that the LSTUT outper-
forms all the other models and can potentially learn features related to
music structure at different time scales. Overall, we show the importance
of integrating both recurrence and attention in the architecture of music
models, and their potential use in future automatic composition systems.
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1 Introduction

Music is hierarchical in nature, with notes played over milliseconds, motifs or-
ganised over hundreds of milliseconds, phrases spanning over seconds, and so on
(Koelsch et al., 2013). For automatic composition systems, successful modelling
of music at all time scales in this hierarchy is critical for the music to match
the conventions of Western tonal harmony. As human composers work with the
interrelations among local (e.g. a perfect cadence) and global structures (e.g.
sonata form), we would like generative systems to imitate similar capabilities.

Neural network-based methods for automatic music composition are gen-
erally trained as sequence models, which learn to predict the next event in a
sequence given the historical context of the previous events. In music modelling,
events are notes and silences, temporal slices of notes, or groupings of notes,
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depending on the granularity of the chosen music representations. Recurrent
neural networks (RNNs), and in particular long-short term memory networks
(LSTM) (Hochreiter & Schmidhuber, 1997), have been the dominant paradigm
in music modelling and generation. Previous work has demonstrated their ability
to compose motifs and melodies in diverse styles and genres, from Bach chorales
(Liang et al., 2017) to blues and folk music (Eck & Schmidhuber, 2002; Sturm
et al., 2015). More recently, self-attention networks – the transformers (Vaswani
et al., 2017), revolutionised the field of natural language processing, and more
generally, all tasks dealing with sequential data exhibiting long-term dependen-
cies. Transformers have also been applied to music generation and proven to be
an effective paradigm (Huang et al., 2018; Choi et al., 2019; Wu et al., 2020).
Conversely to RNNs, transformers do not keep a memory representation while
processing an input sequence, but a soft (differentiable) mechanism is learned to
contextually access all past sequence elements (c.f. Section 3.1).

However, music modelling is a challenging task for both transformers and
RNNs. The former suffer from complexity and resolution issues (Dehghani et
al., 2018) and the latter struggle to learn long-term dependencies from sequences
(Bengio et al., 1994). The inability of these models to deal with music structure at
different temporal resolutions directly affects the quality of the generated music.
This is a crucial limitation of current music generation system as generated music
tends to be either too repetitive or too contrasting (Briot et al., 2020).

In this paper, we introduce a novel architecture for music modelling and
generation – the long-short term universal transformer (LSTUT). Our method
leverages the ability of LSTMs to learn short musical ideas and the long-term
modelling capabilities of transformers by combining them in a single architecture.
To test our contribution, we evaluate the LSTUT on the MAESTRO dataset
(Hawthorne et al., 2019) – a collection of classical symbolic music for piano, and
compare it to state-of-the-art (SoA) neural network models for music modelling.
We demonstrate that our method outperforms other approaches and can learn
features related to musical structure. Our contributions to the field of music
modelling and generation are twofold: (i) we demonstrate the importance of
recurrence and attention for music modelling; (ii) we introduce a class of music
models focused on learning music structure that outperform SoA approaches.

2 Related Work

For LSTM networks, improving the ability to relate musical content at longer
time scales is typically done through conditioning or increasing memory capac-
ity. The first method provides the network with additional input at each time
step, such as the current position within the measure (Johnson, 2017). The sec-
ond consists in either increasing the number of memory cells or introducing an
attention layer (Bahdanau et al., 2014) to let the network contextually access
the input sequence up to a certain number of elements (Waite, 2016).

On the other hand, transformer networks have demonstrated to be promising
at modelling and generating music with increased structural complexity (Huang
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et al., 2018; Choi et al., 2019; Wu et al., 2020). Nevertheless, one of the most
problematic issues of transformers, which is further discussed in the paper, is
the quadratic complexity of their attention mechanism. A common approach to
circumvent this issue consists in splitting each training sequence into a number
of sub-sequences of manageable length (e.g. 30 seconds). However, this prevents
learning across time scales larger than the predefined window.

Similarly to the LSTUT, Wang et al. (2019) also combined transformers
and RNNs. However, their architecture does not posses an inductive bias in the
transformer part, and the use of the original attention mechanism, requiring
quadratic complexity, hinders their applicability to long music sequences.

3 The Long Short-Term Universal Transformer

Our architecture is specifically designed to learn both short- and long-term de-
pendencies from music sequences. Even though short musical excerpts are ade-
quate to learn simple musical ideas, such as figures and motifs, learning long-term
dependencies is only possible if entire music sequences are considered. This calls
for a model which can handle long sequences efficiently and learn structural pat-
terns at different temporal resolutions. To that aim, we adapted the transformer
architecture to be computationally more efficient (both in time and space), as
well as making better use of its parameters. This was achieved through linear at-
tention and weight sharing. To learn structural patterns at different time scales,
we added recurrence to the model in two ways: (i) leveraging the weight shar-
ing mechanism to perform multiple encoding steps at a linear cost (recurrence
in depth); and (ii) integrating recurrent neural networks upstream and down-
stream the transformer layer (recurrence in time). The latter is important to
learn local structures, whereas the former improves the long-term modelling ca-
pabilities. The architecture of the resulting model – the long-short term universal
transformer (LSTUT) – is illustrated in Figure 1 and detailed as follows.
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Fig. 1. Illustration of the LSTUT architecture for music modelling.
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3.1 The Transformer

Transformers are a class of neural networks for sequence processing based on the
concept of self-attention. Instead of keeping an explicit memory representation,
this mechanism involves comparing the elements (or tokens) in an input sequence
with all of the others, and updating the information about each token as a result.
To this end, three vectors are computed from each position in the input sequence:
a query, a key, and a value. The amount of attention that token x(j) pays to token
x(k) is derived from the former being used as query and the latter being used as a
key. The resulting attention distributions are then used as weights, so that each
token is represented as a weighted sum of its value vector. To learn different
representations, the attention mechanism is multiplexed into several “heads”,
each yielding its own attention distribution. The attention heads differentiate
themselves by the way they compute the queries, keys and values.

Formally, let i be the index of an attention head, and let Qi,Ki, Vi ∈Mn×n

be query, key and value matrices for that head, respectively. For a sequence
represented by the matrix s ∈Mn×N (R) where N is the sequence length and n
is the dimension of each token, the values produced by attention head i are:

softmax

(
(Qis)

T (Kis)√
n

)
(Vis) . (1)

The values produced by the attention heads are then concatenated, and matrix
multiplication is applied (at each position in the sequence independently) to re-
duce their dimensionality back to n. After the multi-headed attention sub-layer,
a dense neural network is applied as a transition function. Layer normalisation
and residual connections are then used in between these two sub-layers.

In our architecture, the transformer is used to relate musical content through-
out the composition, e.g. identifying the repetition of phrases or sections.

3.2 Adding Recurrence in Depth and Reducing Complexity

The transformer architecture originally proposed in (Vaswani et al., 2017) has
been criticised for being computationally inefficient and for not containing an in-
ductive bias (Dehghani et al., 2018). The computational complexity of the vanilla
transformer is proportional to the square of the sequence length, which becomes
prohibitive for considerably long sequences. An inductive bias is a tendancy to
learn iterative or recursive transformations, a property that recurrent networks
posses by definition. For instance, the LSTM learns a function of both the input
and the state, which is then applied iteratively across the input sequence. This
property is appealing for music modelling, due to the hierarchical nature of tonal
music which makes it suited to such transformations.

To address the first issue, our architecture implements the attention mech-
anism from (Katharopoulos, Vyas, Pappas, & Fleuret, 2020), which makes the
complexity linear in the sequence length. This is achieved by defining the atten-
tion among two tokens as the dot product between the queries and keys, which
permits a factorisation (cf. Appendix A). To include an inductive bias in the
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transformer, we consider its generalisation from (Dehghani et al., 2018) – the
universal transformer (UT). As can be seen in Figure 1, the transformer layer is
repeated as a loop according to the number of recurrent steps. This originates a
stack of encoder (E) layers sharing the same parameters.

3.3 Adding Recurrence in Time

In the original transformer, encoding the temporal relationships of sequence
elements, prior to the self-attention sub-layer, is done by manually injecting this
information for each token – a procedure known as positional encoding. The
reliance on positional encodings has two consequences: the model struggles with
both learning a precise representation of the input, and learning to reconstruct
a precise representation of the output. In addition, transformers rely on having
diversity of attention heads, which is needed for learning across different time
scales, although not guaranteed as shown in (Li et al., 2018).

To address these issues, our architectures includes two LSTM networks be-
tween the linear UT layer. The LSTM on the lower level has two main benefits:
(i) it temporally contextualises the input data, thus replacing the positional en-
coding; (ii) it facilitates the process of modelling local structures by learning a
higher level representation of the input sequence, e.g. labelling chords. The UT
then distributes this information across the entire input in a global fashion. The
LSTM on the top level is used to “re-localise” the output of the UT, thereby
reconstructing it to a high resolution, e.g. outputting chords.

4 Experiments

In line with previous works (Elliot, 2016; Huang et al., 2018), we hypothesise that
recurrence and attention are both key components for learning short- and long-
term dependencies from music. Our hypothesis can be decomposed as follows:
(i) attention is key for learning long-term structure; (ii) recurrence facilitates
the discovery of short-term structure; (iii) inductive biases improve the ability
to learn long-term structure. All these elements are present in the LSTUT.

To test our hypothesis, we devised an experimental framework that includes
(i) a basic LSTM (recurrence and inductive bias); (ii) an attention LSTM, adding
an attention mechanism to the former; (iii) a transformer (self-attention); (iv)
a UT (self-attention and inductive bias); and (v) a LSTUT (self-attention, in-
ductive bias, and recurrence). The first 4 models were also used as baselines for
evaluating the performance of our proposed model (LSTUT).

We evaluated all models on the music modelling task, quantifying their abil-
ity to predict symbolic music. This was done by computing the cross entropy
loss and perplexity of each model on the test set. Cross-entropy is the dominant
measure in machine learning for training and evaluating classification models,
and it is also extensively used to evaluate music models (Briot et al., 2020). Intu-
itively, it measures the difference between two probability distributions: the tar-
get distribution (the actual music sequences), and the predicted one (the model’s
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predictions of these sequences). The exponentiation of the entropy, known as
perplexity, brings the metric to a linear scale which makes it easier to interpret.

Evaluating the predictive abilities of a music model concerns several aspects
and properties of music, including music structure. This last property becomes
more evident with longer sequences, thus pushing a model to make better use
of its parameters rather than increasing its complexity. More precisely, a model
that learned to predict music sequences of considerable length (e.g. with 5K+
tokens) has potentially learned to relate musical patterns at different time scales
rather than memorising all sequence elements. A possible way to do this is by
detecting repetitions and variations, which are key elements of music structure.

4.1 Music dataset and representation

We trained and tested our models on the MAESTRO Piano-e-competition dataset
(Hawthorne et al., 2019), a collection of classical piano performances containing
1281 MIDI tracks with average duration of 565± 447 seconds. This dataset pro-
vides an ideal test-bed for our experiments due to (i) the structural complexity
of the compositions; (ii) the inclusion of long music pieces; (iii) the fact that part
of Western classical understanding of musical form lies in performative interpre-
tation of a score. Each track is quantised to the 16th note, transposed to all
keys, and encoded as done in the BachBot (Liang et al., 2017), with the notes of
chords unrolled in time and separated by specific events. Although this approach
elongates sequences, it makes it easier to model polyphony, which should other-
wise be learned as the joint probability distribution of all pitches being played
(or released) at the same time step – the approach of piano-roll representations.
In contrast to other works, we do not trim nor discard the resulting sequences.
Indeed, we want to study our models on entire music pieces, thereby testing their
ability to learn structural properties of music at all the possible time scales.

The dataset is split into training, validation and test sets, with the last two
partitions receiving 10% of the tracks respectively. Overall, the dataset contains
2781 sequences with average length of 5074± 1471 music events.

4.2 Implementation Details

To ensure comparability, all the transformer-based architectures make use of
the linear self-attention mechanism (cf. Section 3.2). For the LSTM models, a
stack of 3 LSTMs each with hidden dimension 256 was used. The transformer
layers all have 8 attention heads, and all universal transformer layers perform 4
depth-recurrence steps. All models begin with an embedding layer of dimension
32 following the input layer, and used dropout rate of 10%.

Models were trained to minimise the cross-entropy loss with label smoothing
set to 0.1 and gradient norm clipping at 0.1. We used the Adam optimiser with
the learning rate schedule from the original transformer paper (Vaswani et al.,
2017), together with an early stopping policy (with 10 epochs of patience, and a
delta of 10−2) to prevent over-fitting. Our models were implemented in Python
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3.7, using Tensorflow 2.2 (Abadi et al., 2015). For data processing, we used
Librosa 0.8 (McFee et al., 2020) and pretty midi (Raffel & Ellis, 2014).

5 Results

5.1 Learning to predict music

The results pertaining to the evaluation of the models are shown in Table 1.
From the results of a Kruskal-Wallis H-test, we found that the distributions

of the cross-entropy evaluations associated to the five music models under anal-
ysis differ significantly (χ2 = 682.24), with p-value less than 0.0001. Post-hoc
multiple comparisons (Kolmogorov-Smirnov tests) were then performed to de-
tect significant differences between each pair of models (Bonferroni corrections
were applied to account for multiple comparisons). From these tests, we found
that only the cross-entropy evaluations of the Transformer and the UT were not
statistically significant (p = 0.61), whereas those of all the others were (p < 0.05).

Results show that the LSTUT achieved the best music modelling perfor-
mance, and statistically outperformed all other models. The use of an attention
mechanism in the LSTM improved its modelling performance, thereby confirm-
ing previous results (Waite, 2016). All the transformer-based networks outper-
formed the LSTMs, with the UT achieving comparable results to the vanilla
transformer with only half of the parameters.

5.2 Learning music structure features

To analyse the extent to which the LSTUT can learn features related to mu-
sic structure, we manually inspected the attention distributions of its attention
heads on a given piece of music. The attention distributions are then compared
to the self-similarity matrix (SSM) computed on the same piece. SSMs are a
powerful tool extensively used in music structure analysis. To compute an SSM,
the music signal is divided into a sequence of feature vectors and all elements
of the sequence are compared with each other for similarity. When visualising
an SSM, repetitions typically yield path-like structures, whereas homogeneous
regions yield block-like structures (Müller, 2015).

For this analysis, we chose “Fly” by Ludovico Einaudi – a minimalist compo-
sition for piano. This contemporary music piece is well suited for our analysis due

Table 1. Music modelling evaluation on the test set.

Model Cross Entropy Perplexity No. of parameters

Basic LSTM 3.42 148.4 1420K
Attention LSTM 3.31 107.8 1521K
Transformer 3.08 109.5 1001K
UT 3.07 151.3 540K
LSTUT 2.44 61.8 1308K
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Fig. 2. A SSM of “Fly” (Left) compared with the attention distribution of a selected
head in the LSTUT (Right), demonstrating that structural features are learned.

to its rich and diverse structure. The SSM of this track is shown in Figure 5.2,
highlighting the presence of both local and global structural components. This
is complemented by the visualisations of a selection of the attention heads of our
model, obtained when the track is autoregressively fed to the network.

6 Discussion and Conclusions

In this paper, we put forth the hypothesis that modelling music – the general task
on which music models are trained for generation, necessitates both recurrence
and attention. These are key architectural components to learn the short- and
long- term dependencies arising from the structural complexity of real music.
We introduced the long-short term universal transformer (LSTUT), a novel ar-
chitecture combining recurrence and attention paradigms, and integrating com-
putational improvements to handle long sequences. To test our hypothesis, we
pushed the boundaries of state of the art music models – variations of LSTMs
and transformer architectures, to predict entire classical music pieces spanning
over several minutes. We also analysed the attention distributions of the LSTUT
on a structurally complex piece of music and compared them to its self-similarity
matrix (SSM) – a tool extensively used in music structure analysis.

Our results showed that the LSTUT significantly outperformed our baselines
on the music modelling task, and can learn features related to music structure.
In this work, we focused primarily on learning music structure, and our genera-
tions still require more research effort. This implies that learning multiple music
properties is still an open problem, and a gap between modelling and generating
music exists. Nonetheless, a model failing to learn long- and short-term structure
cannot be expected to generate music with these properties, which are instead
peculiar to real compositions. In our future work, we will expand the range of
musical styles and interpretations used to test our models, and attempt to bridge
the gap between what a music model can learn and what it can actually generate.
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. . . Kim, T. (2020, July). librosa/librosa: 0.8.0. Zenodo. Retrieved
from https://doi.org/10.5281/zenodo.3955228 doi: 10.5281/zenodo
.3955228

Müller, M. (2015). Fundamentals of music processing: Audio, analysis, algo-
rithms, applications. Springer.

Raffel, C., & Ellis, D. P. (2014). Intuitive analysis, creation and manipulation
of midi data with pretty midi. In 15th international society for music
information retrieval conference late breaking and demo papers (pp. 84–
93).

Sturm, B., Santos, J. F., & Korshunova, I. (2015). Folk music style modelling
by recurrent neural networks with long short term memory units. In 16th
international society for music information retrieval conference.

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A. N.,
. . . Polosukhin, I. (2017). Attention is all you need.

Waite, E. (2016). Generating long-term structure in songs and stories. Re-
trieved 2020-08-04, from https://magenta.tensorflow.org/2016/07/

15/lookback-rnn-attention-rnn/

Wang, Z., Ma, Y., Liu, Z., & Tang, J. (2019). R-transformer: Recurrent neural
network enhanced transformer.

Wu, X., Wang, C., & Lei, Q. (2020). Transformer-xl based music generation
with multiple sequences of time-valued notes.



References 11

A Linear Attention Details

Here we give a derivation of the linear attention mechanism from (Katharopoulos
et al., 2020). Suppose that for a particular attention head we have queries and
keys qi, ki ∈ Rm, and values vi ∈ Rn. If we define the attention that query qi
pays to key kj to be

φ(qi)
Tφ(kj)∑

l φ(qi)Tφ(kl)
(2)

for some function φ (applied element-wise to the vectors, and which is strictly
positive) 4 then the resulting value for this attention head at sequence position
i will be ∑

j φ(qi)
Tφ(kj)vj∑

j φ(qi)Tφ(kj)
(3)

and factorising this gives: (
φ(qi)

T
∑

j φ(kj)v
T
j

φ(qi)T
∑

j φ(kj)

)T

(4)

and finally observe that both of the summands above do not depend on i and
thus can be computed once and shared between the calculations for all positions
in the sequence. In order to prevent the model from attending to the future,
instead of summing over all sequence positions in the above, we compute the
cumulative sum (which can still be done in linear time). See listing 1.1 for an
implementation of this attention mechanism in TensorFlow.

Listing 1.1. Implementation of linear attention in Python 3.7 and TensorFlow 2.2.0

# Suppose ‘ keys ’ , ‘ que r i e s ’ are o f shape
# num attent ion heads ∗ batch sz ∗ s e q l e n ∗ M
# and ‘ values ’ are o f shape
# num attent ion heads ∗ batch sz ∗ s e q l e n ∗ N
numerator sum elements = t f . einsum ( ’ ijkm , i jkn−>ijknm ’ ,

keys , va lue s )
numerator = t f . cumsum( numerator sum elements , a x i s =2)
numerator = t f . einsum ( ’ ijknm , ijkm−>i jkn ’ , numerator ,

q u e r i e s )
denominator = t f . einsum ( ’ ijkm , ijkm−>i j k ’ ,

t f . cumsum( keys , a x i s =2) ,
q u e r i e s )

denominator = t f . expand dims ( denominator , a x i s=−1)
output = numerator / ( denominator + 1 .0 e−6)

4 We follow Katharopoulos et al. and take φ(x) := ELU(x) + 1 (Clevert, Unterthiner,
& Hochreiter, 2015).


