
jaki : User-Controllable Generation of Drum
Patterns using an LSTM Encoder-Decoder and

Deep Reinforcement Learning

Fred Bruford1, SKoT McDonald2, and Mark Sandler1

1 Queen Mary University of London
2 inMusic Brands, Inc

fred.bruford@gmail.com

Abstract. In this paper we present ongoing work on jaki, an auto-
matic drum pattern generation algorithm designed for use in computer-
assisted composition. Using an LSTM Encoder-Decoder model and Deep
Q-learning, jaki generates 1-bar continuations of a ‘seed’ pattern that
can be controlled by musical features, thus generating pattern varia-
tions that fit the style of the seed whilst exhibiting certain user-defined
characteristics. This paper provides an overview of the algorithm, with
several examples of patterns that have been generated with it, along
with evaluation and discussion of potential further improvements to it.
The algorithm is available for public use, and may be found at https://
github.com/fredbru/jaki, with further examples.

Keywords: drum patterns, generation, reinforcement learning, LSTM

1 Introduction

An important application of musical computational creativity is computer-assisted
composition. Automating certain compositional processes may make them faster
for a composer to perform, and computationally generated musical ideas may act
as a source of inspiration to them. As the composer may still want some control
over the final result, designing generative systems that can be ‘tuned’ according
to user-defined characteristics, such as musical features, could be desirable.

Due to the prevalence of drum loops or drum patterns in many genres of
music, a number of systems for generating them computationally have been pro-
posed, with user control a key element in many drum loop generation systems.
For example, tools have been designed that enable users to control high-level pa-
rameters like complexity in drum pattern combination (Sioros & Guedes, 2011)
or syncopation and density for modifying Markov probability distributions repre-
senting drum patterns (Jordà, Gómez-Maŕın, Faraldo, & Herrera, 2016). Others
allow a user to sort through pre-made loops from multiple generation algorithms
(Vogl, Leimeister, Nuanáin, & al, 2016), or choose a source pattern and the
speed of variation generation in a genetic algorithm (Nuanáin, Herrera, & Jorda,
2015). A related method that allows users to supply their own target training



2 Fred Bruford, SKoT McDonald and Mark Sandler

data samples for a Variational Autoencoder (VAE)-based system was proposed
in (Tokui, 2020). Finally, a conditioning method for LSTMs has been proposed
to control drum pattern generation based on various features including metrical
structure and analysis of other instrument parts in a track (Makris, Kaliakatsos-
Papakostas, Karydis, & Kermanidis, 2019).

Deep reinforcement learning algorithms like Deep Q-learning have been pro-
posed to offer another means of tuning music generation algorithms, for example
by setting rewards that ensure their output abides by certain music-theoretic
rules (Jaques, Gu, Turner, & Eck, 2017). We propose that this approach may
also be applied to work with user-defined musical features, offering an alternate
means of integrating user control into a drum pattern generation system.

In this paper, we present jaki, a drum pattern generation system. jaki gener-
ates continuations of symbolic drum patterns using a Long-Short Term Memory
(LSTM) Encoder-Decoder architecture coupled with a Deep Q-learning network
(DQN). Given an input 1 bar ‘seed’ drum pattern, the LSTM predicts a second
bar of the pattern. The DQN then tunes this new pattern according to a set
of musical features, four currently implemented: syncopation, cymbal density,
drum density and repetition. The user sets the desired level (low, medium, high)
of these features, individually or in any combination, according to what charac-
teristics they want the pattern to exhibit. The reward of the DQN is calculated
based on how close the feature levels extracted from the generated pattern are
to the target feature levels, and how well it fits the style of the input pattern as
predicted by the LSTM. jaki therefore aims to generate continuations of drum
patterns that exhibit user-defined musical characteristics, whilst being stylisti-
cally consistent.

Our approach offers possible advantages to existing approaches to assistive
music generation. While neural network-based models may excel at generating
stylistically accurate musical content, their tendency to generate the most prob-
able content to fit a dataset may lead to musically uninteresting results (Yang,
Chou, & Yang, 2017). Connecting a DQN to a conventional neural network can
alleviate this issue whilst keeping the stylistic accuracy, as the rewards of the
DQN may be set to maximize features that represent possibly interesting qual-
ities, such as syncopation. Our approach is also flexible in that it could include
any possible features, in any combination. As the role of the DQN is to learn
a mapping from actions to rewards (see 2.2) the DQN is blind to the reward
function, meaning that it may be changed without changing the DQN itself. As
in jaki the feature targets are incorporated within the reward function, they can
be easily modified, allowing a user to set any combination of the four features
to any target value, and making it easy for further features to be added.

2 Algorithm

As shown in Figure 1, jaki consists of two connected models, an LSTM Encoder-
Decoder model and a DQN, the former predicting a pattern and the latter tuning
the pattern according to the feature targets and LSTM predictions.



2020 Joint Conference on AI Music Creativity, Full Paper 3

2.1 Generating Drum Patterns with Sequence-to-Sequence learning

In this system, the role of the LSTM is to generate a predicted pattern to be
tuned by the DQN, and a model of musical style to constrain this tuning. As
jaki is designed to generate full 1-bar patterns, this is a problem of sequence-
to-sequence learning, for which an LSTM Encoder-Decoder architecture may be
used (Sutskever, Vinyals, & Le, 2014). The LSTM Encoder-Decoder uses two
separate LSTM networks, an encoder and a decoder. In brief, the role of the
encoder is to learn a representation of the input sequence. The decoder then
takes this representation as its input and uses it to generate an output sequence.

Fig. 1. jaki System Diagram

LSTM Training: The LSTM was trained on a dataset of approximately 5500 2-
bar MIDI drum patterns to predict the second bar from the first. Each pattern
had 5 instrument parts: kick, snare, closed hihat, crash cymbal and tom. As
they were MIDI patterns, there was no timbral information. All patterns were in
4/4 with a minimum note value of a sixteenth note. The algorithm was tempo-
agnostic, with each 1-bar pattern represented as a 32-by-16 one-hot vector, with
32 different hit/rest combinations of the 5 parts occurring in the dataset, and 16
metrical positions per pattern considering semiquaver precision in one 4/4 bar.

2.2 Tuning to Features using Reinforcement Learning

Formulating the task of generating and tuning a drum pattern as a generic
reinforcement learning problem is the first step towards its practical application.
In reinforcement learning, an agent and its environment may be defined as a
tuple (st, at, rt, st+1). In a given environment state st at time t, the agent takes



4 Fred Bruford, SKoT McDonald and Mark Sandler

an action at leading to a new state st+1. Based on st+1, the action is assigned a
reward rt which the system attempts to maximise.

Considering the generated pattern as the environment, with state st repre-
senting its current arrangement of notes, each action at is defined as any single
change to this arrangement - either removing or adding a note. In order to gen-
erate patterns that both exhibit user-defined musical characteristics and fit the
style of the seed pattern, the overall reward rt for at in st is the sum of a style
reward, rstyle and a feature reward, rfeatures.

r(st, at) = rstyle + rfeatures

rstyle is calculated using the prediction of the LSTM from the seed pattern
x. The fitness of the output pattern to the style of the seed pattern is calculated
by the LSTM as the log probability of the output state st+1 given the input x.

rstyle = log p(st+1|x)

rstyle controls the output pattern st+1 to ensure it fits the style of x. The fea-
ture reward, rfeatures, enables tuning to musical characteristics. The number of
features used, n, is chosen by the user. For each feature, the user inputs a tar-
get score Fn

target based on their desired characteristics (e.g. a high syncopation
score for a syncopated pattern). rfeatures is calculated as the sum of absolute
differences between target scores Fn

target and the feature scores calculated on the
output pattern, Fn

output, with a weighting factor wn for each feature:

rfeatures =

n∑
i=1

|Fn
target − Fn

output|wn

Finally, the most probable pattern predicted by the LSTM is used as the first
state s0. The LSTM thus connects to the DQN through both rstyle and s0.

Termination: The algorithm terminates when the overall reward rt reaches
a given threshold set as a hyperparameter. However, it is not guaranteed that
for every possible combination of target feature scores and seed pattern there
will be a pattern that meets the chosen threshold. To ensure the algorithm still
attempts to find the best possible pattern in these cases and terminates at a
partial solution, this threshold is decreased over time.

Controllable Musical Features: In theory, any musical features applying to
drum patterns may be integrated within this model, though at the expense of
ease-of-use. Currently, four simple features are implemented for user control,
each which may be set to Low, Medium or High in any combination:

– Cymbal Density: Total number of cymbal hits (crash or hihat) in pattern.
– Drum Density: Total number of drum hits (kick, snare, tom) in pattern.



2020 Joint Conference on AI Music Creativity, Full Paper 5

– Syncopation: Sum of syncopation in each part, calculated using measure
from (Longuet-Higgins & Lee, 1984) as implemented in (Bruford, Lartillot,
McDonald, & Sandler, 2020).

– Repetition: Proportion of hits at the same metrical position in first two and
second two beats of the pattern, aka ‘symmetry’ in (Bruford et al., 2020).

2.3 Deep Q-Learning

Following from the above formulation, the role of Deep Q-Learning as performed
by the DQN is to predict the action-value function, Q(at, st), estimating the
value of an action as the sum of expected future rewards from taking that action
(not just the immediate reward) (Mnih et al., 2013). Q(at, st) is predicted using a
neural network via experience replay. As the agent interacts with its environment,
it stores its experience at each time step in a buffer as an (st, at, rt, st+1) tuple. It
then samples from this memory to select an action, choosing between exploration
or exploitation as it learns by taking either random actions or actions predicted
to maximize Q(at, st).

One issue with standard Deep Q-learning is that it can be prone to over-
estimating the value of actions. A variant applied in jaki that has been shown to
alleviate this problem is Double Deep Q-Learning (van Hasselt, Guez, & Silver,
2016). Here, two separate networks are used, with one predicting what action
to take, and the other calculating the target Q-value of that action. As these
networks operate as a single system, they are represented as such in Figure 1.

2.4 Implementation

jaki was written in Python 3.8.5 using Keras and Tensorflow libraries. It is
publicly available at https://github.com/fredbru/jaki, with functionality for
generating patterns via a command line interface with MIDI file support and a
pre-trained LSTM model. The encoder network consists of two LSTM layers of
250 and 100 nodes, with the latter shared as the input to the decoder network.
Each of the two DQNs was the same size and shape, with two hidden layers of
24 and 48 nodes. For complete details, please see the GitHub link above.

A final implementation detail to note is that during operation the environ-
ment is reset to the initial state s0 after every 50 time steps. This was found
to significantly speed up the generation process by reducing the time spent in
unfavourable states that are far away from the LSTM prediction and hence have
low rstyle.

3 Evaluation

The aim of our evaluation was to understand how well jaki could generate pat-
terns to fit various feature targets, in particular targets for each feature individ-
ually and features in combination, and how well it kept to the target style under
these conditions. For 100 seed patterns not included in the training dataset, we



6 Fred Bruford, SKoT McDonald and Mark Sandler

used jaki to generate patterns under seven different conditions: each feature indi-
vidually, a random combination of two and three of the features, and all features
together. For each of the 100 trials, the target feature score for each feature was
set randomly.

For each trial, the distance of the generated pattern to the target style and
target feature(s) was measured using the style and feature rewards rstyle and
rfeatures calculated at the final step of generation. As discussed in Section 2.2,
the reward threshold required for the DQN algorithm to terminate decreases over
time; if the DQN fails to generate a pattern that meets the target reward within a
fixed number of time steps, the required reward value is lowered. This decreasing
threshold means that the algorithm will search for a partial solution when it
cannot perfectly meet the targets. The final rewards achieved at termination,
scaled between 0 and 1, therefore indicate the performance of the algorithm
based on how well the final generated pattern meets the target feature scores or
target style, where a reward of 1 indicates perfectly meeting the targets, and 0
not at all. We take the mean of the 100 trials of each condition.

3.1 Results and Discussion

The results of the evaluation are shown in Table 1. In general the more features
that are combined, the harder it is for the algorithm to generate a pattern that
meets the target feature scores. It is likely however that for some combinations
of features and seed patterns it is not possible to meet the target feature scores
perfectly. This may be because making the required musical changes to exhibit
the target scores results in too much of a deviation from the LSTM prediction. As
more feature targets are added, the amount the pattern has to change increases.
In these cases, a weight to control the style reward could be useful to allow
patterns to deviate further from the seed to meet the feature targets. In some
cases it may also be that a change in one feature affects the others - for example
removing a note to decrease density could decrease syncopation if the note was
syncopated.

Features Mean final rstyle Mean final rfeatures
Syncopation 0.911 0.917

Cymbal Density 0.900 0.856

Drum Density 0.917 0.940

Repetition 0.922 0.925

2 Features 0.911 0.846

3 Features 0.903 0.821

All Features 0.909 0.775

Table 1. Average of final style reward, rstyle and feature reward rfeatures for jaki run
on 100 seed patterns with randomly set feature targets for seven conditions.



2020 Joint Conference on AI Music Creativity, Full Paper 7

A further observation is that the average final rstyle for each condition varies
very little, an unexpected result, as we would expect it to decrease along with
rfeatures for harder conditions. An explanation of this is that the environment
is repeatedly reset to the initial state s0, the most probable pattern as predicted
by the LSTM, after a fixed number of time steps if the algorithm is unable to
meet the reward threshold. Reverting repeatedly to s0 means that the pattern
is less likely to deviate strongly from the LSTM prediction. To encourage a
larger deviation from the stylistic prediction, we could reset the environment less
frequently, or add an additional weight to rstyle that decreases its contribution
to the overall reward.

Finally, it is interesting to note that the most difficult feature for the al-
gorithm to control is the Cymbal Density feature, with a mean final rfeatures
of 0.856, versus the other individual features which are all above 0.917. This is
explained by the composition of the dataset. The use of cymbals is relatively
consistent throughout each two bar pattern in our dataset, with variation from
the first to second bar usually coming from adding ornamentation on snare, kick
drum or toms, or sometimes a single crash cymbal. While the algorithm avoid-
ing adding extra cymbals to the pattern is technically a correct reflection of
the musical corpus, from a user perspective this is possibly an undesirable fea-
ture, as a user may still want to easily add or remove cymbals to vary a pattern.
This undesigned behaviour is typical of the kind of unpredictable behaviour that
neural network-based systems can exhibit, that can equally become a source of
confusion or interest depending on the application.

4 Examples

From a quantitative evaluation such as that performed above, it can be difficult
to assess the subjective quality of a generative system. We therefore provide a
selection of example patterns generated by jaki to be discussed. Figure 2 shows
patterns generated by jaki for three seed patterns not included in the training
set. Each seed is shown with the most probable continuation predicted by the
LSTM (initial state s0), and three continuations generated combined with the
DQN with various feature targets. Further examples with audio are provided via
the GitHub link above.

As the examples suggest, the LSTM predictions tend to be simplified versions
of the seed patterns which, though they may be useful, does support the need
for feature-based control to make the patterns more interesting. Otherwise, the
examples back up the conclusions from the evaluation above. In most cases the
DQN is able to find solutions that are stylistically valid, and exhibit the desired
feature scores, with the best results appearing to be when just one or two features
are used, e.g. Pattern B iii) and A ii). The challenge of changing cymbal density
can also be seen in Pattern C iv) where a high cymbal density only adds one
cymbal hit to the pattern.



8 Fred Bruford, SKoT McDonald and Mark Sandler

Fig. 2. Example patterns generated by jaki with various feature scores. CD = Cymbal
density, DD = Drum Density, R = Repetition, S = Syncopation.

5 Conclusion

In this paper we have presented ongoing work into a drum pattern generator
that can generate controlled continuations of 1 bar patterns, using an LSTM
Encoder-Decoder model coupled with a DQN incorporating musical features
into its reward function. The system has been shown to be capable of gener-
ating variations on patterns that maintain stylistic features whilst exhibiting
user-defined musical characteristics. However, the system is not always able to
generate patterns that exactly fit all the desired feature scores and still fit the
stylistic model.

For further work, we intend to investigate these cases further, first by looking
deeper into the style model of the LSTM and testing different ways of combing
the style reward with the feature reward. In cases where solutions are not pos-
sible, we will investigate ways to allow more control over the way features are
combined, so that a user can prioritise certain features. We will also continue
to add new controllable features, as the flexibility of the DQN algorithm makes
them easy to integrate in the reward function. In addition to rhythmic features
as used in this paper, we aim to include controls for performance techniques such
as velocity and expressive timing.

References

Bruford, F., Lartillot, O., McDonald, S., & Sandler, M. (2020). Multidimensional
Similarity Modelling of Complex Drum Loops with the GrooveToolbox. In
Proceedings of The International Society for Music Information Retrieval
Conference (ISMIR).

Jaques, N., Gu, S., Turner, R. E., & Eck, D. (2017). Tuning recurrent neu-
ral networks with reinforcement learning. In International Conference on
Learning Representations (ICLR).



References 9

Jordà, S., Gómez-Maŕın, D., Faraldo, , & Herrera, P. (2016). Drumming with
style: From user needs to a working prototype. In Proceedings of The Inter-
national Conference on New Interfaces for Musical Expression (NIME).

Longuet-Higgins, H. C., & Lee, C. S. (1984). The Rhythmic Interpretation of
Monophonic Music. Music Perception.

Makris, D., Kaliakatsos-Papakostas, M., Karydis, I., & Kermanidis, K. L.
(2019, June). Conditional neural sequence learners for generating drums’
rhythms. Neural Computing and Applications, 31 (6), 1793–1804.

Mnih, V., Kavukcuoglu, K., Silver, D., Graves, A., Antonoglou, I., Wierstra, D.,
& Riedmiller, M. (2013). Playing Atari with Deep Reinforcement Learning.
arXiv preprint arXiv:1312.5602 .

Nuanáin, C. O., Herrera, P., & Jorda, S. (2015). Target-based rhythmic pattern
generation and variation with genetic algorithms. In Sound and Music
Computing Conference (SMC).

Sioros, G., & Guedes, C. (2011). Complexity Driven Recombination of MIDI
Loops. In Proceedings of The International Society for Music Information
Retrieval Conference (ISMIR).

Sutskever, I., Vinyals, O., & Le, Q. V. (2014). Sequence to Sequence Learning
with Neural Networks. Advances in neural information processing systems.

Tokui, N. (2020). Towards democratizing music production with ai-design of
variational autoencoder-based rhythm generator as a daw plugin.

van Hasselt, H., Guez, A., & Silver, D. (2016). Deep Reinforcement Learn-
ing with Double Q-learning. In Thirtieth AAAI conference on artificial
intelligence.

Vogl, R., Leimeister, M., Nuanáin, C. , & al, e. (2016). An Intelligent Interface
for Drum Pattern Variation and Comparative Evaluation of Algorithms.
Journal of the Audio Engineering Society .

Yang, L.-C., Chou, S.-Y., & Yang, Y.-H. (2017). Midinet: A convolutional gen-
erative adversarial network for symbolic-domain music generation. arXiv
preprint arXiv 1703.10847 .


