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Abstract. The proposed work introduces a new type of auto-tagging
task, called “instrument role classification.” We discuss why the task is
necessary, and further introduce a definition regarding loop based music.
We introduce a new dataset for this task, the Freesound Loop Dataset,
and benchmark the performance of both neural network and non-neural
network based multi-label classification models for six instrument roles.
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1 Introduction

Methods for assisting electronic music production have been emerging rapidly,
and various creation interfaces, such as LogicPro, Ableton Live, Avid Pro Tools,
and Bandlab, have appeared. One easy and engaging creation style is to work
with “loops,” which are audio excerpts, usually of short duration, that can be
played repeatedly in a seamless manner (Stillar, 2005). In other words, the motive
of a clip is simple and straightforward, compared to audio recordings with longer
phrases, and can be summarized within seconds.

In this paper, we present a study that applies auto-tagging in a way that has
rarely been done before in literature, to the best of our knowledge—to tag an
audio clip by its “role.” In the style of loop-based music where multiple loops
are stacked together, each loop plays its “role” in the music. Specifically, we
consider the following six possible roles—Percussion, Bass, Chord, Melody, FX,
and Voice. See Table 1 for examples. Classifying such role provides important
information for users as it eases the process of finding compatible loops that fit
their needs, thereby contributing to assisting electronic music production.

We note that this task is different from general instrument prediction tasks,
as different instruments can play the same role, and the same instrument can
play different roles. Similar to genre or emotion labels, our labels might be sus-
ceptible to the subjective consideration of the annotators. And, our labels are
non-exclusive, as a loop can fill two roles at once.

We create a new dataset for this task and prototype such a model based
on a convolutional neural network that uses a data-driven harmonic filter-based
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Table 1: The instrument roles and the number of associated loops in our dataset

Roles Example instruments Count
Percussion |Drums, glitches, tuned percussion 1,626
FX Risers, cinematic sounds, foley, scratching 845
Melody Instrument playing a melody, arpeggiator 603
Bass Synth bass, fingered bass 493
Chord Piano chords, guitar chords, synth pads 350
Voice Singing voice, spoken word, vocoder 69

front-end (HCNN) proposed lately (Won, Chun, Nieto, & Serra, 2020). With
the behavior of the model capturing harmonic relations while preserving spectro-
temporal locality, we show that the model can learn to distinguish the instrument
roles efficiently under limited data. Both the data and code for implementing
our work can be found at https://github.com/joann8512/Loop-Classifier.

2 Related Works

As technology evolves, music has become easily accessible by people, requiring
effective music searching. As such, automatic tag prediction has been a popular
task (Kim, Lee, & Nam, 2017; Chou, Jang, & Yang, 2018). Choi et al. (Choi,
Fazekas, & Sandler, 2016) introduced a deep fully convolutional neural network
(FCN) and showed that deep FCN with 2D convolutions can be effectively used
for automatic music tagging and classification tasks. After knowing that it is
possible to design efficient CNNs for modeling temporal features such as tempo
and rhythm, Pons et al. (Pons & Serra, 2017; Pons, Slizovskaia, Gong, Gémez,
& Serra, 2017) developed a structure that uses different filter shapes that are
motivated by domain knowledge in the first layer to efficiently learn timbre
representations. Among all the experiments done by Pons et al., the structure
is proven to work more efficiently with twice fewer number of parameters for
singing voice phoneme classification and instrument recognition.

As our task falls within the realm of loops, several new innovative works have
been proposed for dealing with such type of audio material, and our task can
easily be linked to these. Smith et al. (Smith, Kawasaki, & Goto, 2019) intro-
duced an interface for extracting and remixing loops, where users are allowed
to upload music, extract, remix, and mash-up loops immediately. In their user
case study, expert and novice users found it easy to use. A nonnegative Tucker
decomposition-based source separation model was used, and an extra factoriza-
tion step with sparseness constraint improves the separation result. Along with
the work of Smith et al., Chen et al. (Chen, Smith, & Yang, 2020) proposed an
automated method of finding compatible loops, which presents a data generation
pipeline and several negative sampling strategies for ground-truth labeling for
training a machine learning model. In this work, Convolutional neural networks
are shown to perform well in distinguishing between compatible loops and non-
compatible loops. Fairly recently, Ramires et al. built and released the Freesound
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Fig. 1: Log scaled mel-spectrograms of sample loops of various instrument roles.

Loop Dataset (FSLD) (Ramires et al., 2020), a new large-scale dataset of music
loops annotated by experts, in which instrument role, tempo, meter, key, and
genre tags are annotated. This work is possible because of this new dataset.

3 Dataset

We employ FSLD (Ramires et al., 2020) to train and evaluate our instrument
role classification models. Differentiating from other commercial and community
databases of pre-recorded loops, the source of the loops of FSLD is Freesound
(Font, Roma, & Serra, 2013), a community database of audio recordings re-
leased under Creative Commons licenses, making the audios in the dataset dis-
tributable. Within all the annotations from the dataset, we take only the instru-
ment role annotations for our task, making it 6 tags for each loop — Percussion,
Bass, Chord, Melody, FX, and Voice. As a loop can be labeled with multiple tags,
this makes the task a multi-label classification task.

The mel-spectrograms of some example loops are shown in Figure 1. We note
that Melody and Bass loops are monophonic; Chord loops are polyphonic; Voice
loops can be monophonic, polyphonic, or even percussive (e.g., beatboxing),
and it is the only instrument role among the six that is associated with only a
certain instrument (timbre). Table 1 lists the number of loops associated with
each instrument role. We see that Percussion is the most popular one, with
1,626 examples, whereas Voice is the least popular, with only 69 examples.

Although not extracted as one of the label features, the loop’s styles are of
multiple genres, including Bass Music, Live Sounds, Cinematic, Global, Hip Hop,
Electronic, etc, which helps familiarize the model with several genres of loops.

We randomly extract one 3-second chunk from a total of 2,936 loops and
split the data into training, testing, and validation sets by the ratio of 90:5:5.
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Fig. 2: Schematic plot of the HCNN model proposed in (Won et al., 2020)

4 Methodology and Results

We benchmark two neural network based model for this task. The first model,
the HCNN (Won et al., 2020), is constructed with the basic block shown in
Figure 2a. Waveforms transformed with STFT are passed through the harmonic
filters to obtain a harmonic tensor representing it in six harmonics (Bittner,
Mcfee, Salamon, Li, & Bello, 2017). To encourage the convolutional filters to
embed harmonic information along with time and frequency, the harmonics are
treated as channels to be fed. The model uses seven convolution layers and a
fully connected layer. Each layer, except the last, which uses sigmoid instead, is
batch normalized and ReLU-activated. The model was trained with 200 epochs
using scheduled ADAM with learning rate le—4. We use the epoch that achieves
the best result on the validation set. The second model, dubbed non-harmonic
CNN, is an ablated version of HCNN that uses the same network structure as
the HCNN but not those harmonic filters at the front-end.

We also benchmark the following non-neural network based approaches. For
feature extraction, we use Essentia (Bogdanov et al., 2013) gather features from
the low-level (MFCC, and pitch) and tonal (chromagram) representations. For
temporal aggregation, we take the mean, standard deviation, derivative of mean,
and derivative of standard deviation by frame across time, leading to a 104-
dimensional feature vector for each 3-second chunk of loops. Then, we experi-
ment with the classical methods, binary relevance (BR), label powerset (LP),
and distinct Random k-Labelsets (RAKEL) (Trohidis, Tsoumakas, Kalliris, &
Vlahavas, 2008), all available in the scikit-multilearn package, to convert the in-
tended multi-label classification problem to a single-label classification problem.
We then experiment with using either random forest (RF) or support vector ma-
chine (SVM) to build the classifier. For RF, we use 1,000 estimators; for SVM,
we use the linear kernel and set the cost parameter C to 10.

The evaluation results are shown in Table 2. Following (Pons et al., 2018;
Kim, Lee, & Nam, 2019; Won, Chun, & Serra, 2019), we present the results in
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Table 2: Results of all methods. The scores are calculated respectively using
roc_auc_score, average_precision_score, and fl_score from scikit learn metrics.

Methods ROC_AUC PR.AUC F1

BR-RF 0.6201 0.3759 0.5538
BR-SVM 0.6248 0.3561 0.5836
LP-RF 0.6227 0.3714 0.6027
LP-SVM 0.6302 0.3405 0.5930
RAKEL-RF 0.6283 0.3787 0.5880
RAKEL-SVM 0.6325 0.3573 0.6026
non-harmonic CNN 0.8324 0.5772 0.7275

HCNN (Won et al., 2020)  0.8606 0.5860 0.7253

terms of the Area Under Receiver Operating Characteristic Curve (ROC_AUC),
Area Under Precision-Recall Curve (PR_AUC), and the F1 score. We see that
the neural network based models outperform the non-neural network models
by a great margin. The best result is achieved by HCNN, which obtains 0.8606
ROC_AUC. The comparison between non-harmonic CNN and HCNN shows that
the efficacy of using the harmonic filters.

Detailed analysis of the prediction results, the answers appear to be trend-
ing towards giving only one label, caused by the imbalance of multi-label and
single-label annotations. Prediction results reflected the amount of each label
count (Table 1). For the three most common tags — Percussion, Melody, and
FX, where loops with such tags usually have high accuracy score. In contrast,
as Vocal is least labeled, such loops are usually recognized as either Melody
(Singing) or Percussion (Beatboxing). Please see the appendix for example
prediction result of the HCNN model, and its confusion table.

5 Conclusion

In this paper, we have introduced a new music auto-tagging task that aims to
tag each loop by its role. We have also introduced a new dataset for this task,
and benchmarked a few models using the dataset. Our evaluation shows that
HCNN, a neural network based model, is effective in learning useful features
under limited data. For future work, we are interested in using the loop role
classifiers as a building block for automatic mashup or loop-based music creation.
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Fig.4: Examples of the predictions of the HCNN model we implemented. In
each plot, prediction confidence levels are shown (right) next to their ground
truth (left). Each “Predicted” column is the normalized average of prediction
confidence of the repetitions.



