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Abstract. The micro (milliseconds) scale is central in coding expres-
sive musical interaction. We introduce rolypoly~, a drum machine for
live performance that adapts its microtiming, or groove, in relation to a
human musician. We leverage state-of-the-art work in expressive perfor-
mance modelling with LSTM and Seq2Seq architectures, towards real-
time application on the micro scale. Our models are pretrained on the
Groove MIDI Dataset from Magenta, and then fine-tuned iteratively over
several duet performances of a new piece. We propose a method for defin-
ing training targets based on previous performances, rather than a prior
ground truth. The agent is shown to adapt to human timing nuances, and
can achieve effects such as morphing a rhythm from straight to swing.
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1 Introduction

Since the 1980s, musicians and producers have used drum machines as creative
partners, imbuing them with a “live” touch (Brett, 2020) or, conversely, leverag-
ing their “mechanical” nature as a postmodern aesthetic device (Bennett, 2017).

With this work we explore the coupling between drum machine and hu-
man player, with a view to extending their mutual dynamics computationally
(d’Inverno & McCormack, 2015). We centre on the microtiming scale as a locus
of expressive music interaction (Leman, 2016). By separating timing from the
higher levels in a timescale hierarchy, we model the role of drummers as time-
keepers in a group, whose inner-beat groove might react to other players, while
holding down a steady tempo.

We delineate a set of design principles for a new musical agent. rolypoly~ is
a score-driven1 drum machine with the following characteristics:

1 Rowe (1992) distinguishes between score-driven and performance-driven systems.
The latter generally relate to situations of improvisation or “jamming”, which are
outside our current scope. We deal with the standard case of an ensemble playing
a composed piece, with the machine-drummer not necessarily being exposed to the
parts of its partners beforehand.
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– lightweight : inference must be fast enough to run in real-time on an average,
accessible computer. Our evaluations were conducted on a laptop with an i5
CPU and 8GB RAM, without a dedicated GPU.

– audio-interactive: must not only adapt to an incoming sound stream (here-
after called target audio), but also “listen” to a coupling of the former with
its own output.

– progressive/scalable: must not simply rely on a static dataset; rather, it builds
up a performance corpus, learning a piece or a style from the ground up.

– score-agnostic: does not require (but may incorporate) symbolic specification
of the parts played by other musicians.

These specifications follow the mechanics of ensembles in various genres,
where the timekeeper builds up a “feel” for the music without memorising a
complete score of the piece. Moreover, this design aligns with the workflow of
modern digital music production, where an artist may program a rhythm track
and then play a figure which remains unspecified in symbolic notation.

The purpose of rolypoly~ is to couple the groove of the drum track with the
timing inflexions of the target audio, in real time, while building up a schema of
the structure and style of the music over repeated performances, analogously to
the way human players gradually assimilate music and bond together.

Eventually our goal is to develop a multi-agent system with the following
functions: expressive interpretation (of a symbolic part or program), coordina-
tion (with live musical signal(s)), self-reflection and proactivity (via a cognitive
architecture that also allows user feedback), and time-awareness from the micro
(milliseconds) scale to the supra (across performances) (Roads, 2004).

The present work describes the agent active on the micro scale. The source
code, trained models2 and a demo video3 are available online.

2 Related Work

In studies on tempo and time-shift representation, Honing (2001, 2005) posits
that global tempo curves alone cannot account for the alterations observed in
performances of the same material at different speeds. Nevertheless, score-driven
automatic accompaniment has traditionally worked by computing such a curve to
drive the warping of a backing track (Raphael, 2010; Arzt & Widmer, 2010; Cont,
2011). Increasingly however, attention is also being paid to the interpretation of
real-time accompaniment on the micro scale (Xia et al., 2015; Cancino-Chacón
et al., 2017; Maezawa, 2019).

Expressive machine drumming has mostly been approached as an offline pro-
cess. Timing and dynamics are the most frequently studied expressive param-
eters, which is also reflected in “groove” and “humanisation” functions imple-
mented in commercial software like Reason or Ableton Live, where timing and
loudness profiles can be captured from one clip and applied to another, or slightly

2 See https://github.com/RVirmoors/rolypoly/tree/master/py.
3 See https://youtu.be/UHBIzfc5DCI.
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randomised to add a non-deterministic feel. However, microtiming adjustments
can have counterintuitive effects: for instance, systematic deviations to basic
rhythms have been found to damage groove and naturalness perception (Davies
et al., 2013). By leveraging advances in natural language processing, recurrent
neural network (RNN)-based machine learning architectures have been shown
to produce state-of-the-art expressive outputs (Jeong et al., 2018; Gillick et al.,
2019; Oore et al., 2020).

RNNs have also been conditioned on human partner data to compose (Makris
et al., 2019) and perform (Castro, 2019) rhythm patterns. However, to our knowl-
edge no real-time system exists that extends this coupling to the microtime scale.

3 The rolypoly~ Microtiming Agent

We propose a recurrent neural agent that generates rhythm microtiming in real
time, following the design requirements laid out in the introduction.

3.1 Data Representation

Input. The piece to be interpreted is represented as a sequence of feature vector
rows, each representing the t-th set of drum hits, with the following components:

– drums to hit: one-hot encoded over a set of 9 categories, covering kick, snare,
hi-hats, toms and cymbals, following (Gillick et al., 2019);

– timestep t duration, in milliseconds (how long before the next hit);

– local tempo, as specified in the score in beats per minute;

– local time signature, as one value (e.g. 3/4 and 6/8 both resolve to 0.75);

– beat phase, a fractional value (the relative position in a bar);

– target audio descriptor4 (previous hit)

– ̂difft−1, drum-target attack distance (previous hit; as fraction of bar)

The online, causal nature of the system means that, at the moment of in-
ference, it lacks access to the target audio input at or close to the time of the
current hit. In fact, since the audio corresponding to hit t − 1 helps determine
the microtiming offset of hit t, it makes sense to parse it into the feature vector
for timestep t.

The drum-target offset, d̂ifft, is negative if the target audio hits before the
drum5, and positive otherwise. The closest target attack is picked, within the

4 We tested several spectral descriptors but none was found significantly superior. In
Section 5 we discuss prospective strategies for this machine listening task.

5 We used a very fast onset detection algorithm developed by R Constanzo and
PA Tremblay, available at https://discourse.flucoma.org/t/real-time-onset

-detection-example/163/68.
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window (t− durt
3 , t+ durt

3 ), for durt the duration of the hit at timestep t.6 If no

target attack is recorded in this interval, ̂difft−1 is carried over.

Output. Each feature row corresponds to a drum microtiming offset, yt,
with its corresponding estimation ŷt determining when in relation to the absolute
notated time the drum hit will actually be triggered. In a conventional supervised
learning pipeline, the y labels are given at the outset, then used to train the
model, which can finally perform inference on new data. Our online, adaptive
approach, means that y is not given: it can only be obtained after and as a
function of a performance.

We define a variable dt at timestep t as the cumulated realised offsets of
score-to-drum and (variance-adjusted) drum-to-target:

dt = ŷt +A · d̂ifft
σ
d̂iff

/σŷ
, (1)

where d̂ifft is the drum-target offset observed at timestep t.7 Since we found
empirically that target deviations are up to an order of magnitude wider than
drum groove timings, we scale them to match the latter’s standard deviation.

We can then use dt to determine the ground truth drum offsets for training
the next iteration of the model, by subtracting its mean (to keep outputs centred
around zero) and again applying deviation normalisation:

yt = B · dt − µd

σd/σŷ
. (2)

A and B above are hyperparameters, controlling the weighting of the target
offsets and the cumulated offsets, respectively. Their default setting is 1, allowing
the timing output to adapt gradually, without major fluctuations. For rhythm
morphing (see Section 4.2) they can be set to cancel out the effect of variance
scaling. Finally they, as well as the learning rate and number of train epochs,
may be optimised through gradient descent as part of a meta learning pipeline,
by using them as labels and querying a deep net with historical performance
features, plus a desired future σ

d̂iff
.8

6 Attacks that fall within the middle third of a drum hit duration are considered “off-
beat” notes and added to the dataset as no-hit rows with the position quantised to 24
steps per bar. For the first iteration they are flagged as tentative and skipped during
training, but a subsequent performance can confirm them as permanent. Only one
such note, with a length > 10ms, may be added per window, per performance.

7 Since training occurs after inference, we now have access to all d̂iff values recorded

in a performance. Therefore, linking d̂ifft to timestep t is simply a matter of shifting
its column one step into the future.

8 This component is currently in an experimental stage. Eventually a meta model
might maintain a database of model states, and choose among them mid-performance
depending on running σ

d̂ifft
values and other metrics.
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3.2 Model Design

We propose two RNN-derived architectures that predict each following drum
timing based on the input features received in real time. Both are defined and
trained using the PyTorch library (Paszke et al., 2019), and communicate via
OSC to Max, which handles the audio playback and analysis.

The first model is built on a 2-layer unidirectional LSTM network (Hochreiter
& Schmidhuber, 1997) with 256 hidden units fed into tanh nonlinear activations.
The result is passed through a linear layer with a single output, ŷ.

The second model is a simplification of the Seq2Seq architecture described
in (Gillick et al., 2019). Sequence to sequence models (Sutskever et al., 2014)
comprise an encoder network, producing a latent vector z as a representation
of a source sequence, and a decoder network which, primed with z, outputs a
corresponding target sequence. In our case the source sequence is the complete
pre-performance input dataset (sans the unrealised audio-related features), and
the target is the performance dataset up to the current timestep. The encoder
is a bidirectional LSTM, whose hidden units can learn both past and future
dependencies at every timestep. The decoder is a 2-layer unidirectional LSTM
with 256 hidden units. As with the first model, a tanh nonlinearity and final
linear layer project the decoder output to a one-dimensional activation, ŷ.

To illustrate the difference between the proposed models with an analogy,
the unidirectional LSTM is equivalent to sightreading a drum part, while the
Seq2Seq architecture enables memorising the material “backwards and forwards.”

3.3 Training and Deployment

A dataset comprising several performances of the same piece with precise anno-
tations of the notes played by the drummer in relation to the symbolic score,
which would be needed to train our proposed models, does not exist.9

Fortunately, we are able to use transfer learning to train initial configurations
for our models, by processing a drums-only performance dataset. We used the
Groove MIDI Dataset (GMD)10 from Magenta (Gillick et al., 2019), the largest
existing dataset of expressive drumming.

All MIDI files are parsed with the pretty midi library (Raffel & Ellis, 2014),
with short takes (≤ 1s or containing a single bar) being pruned out. Feature
vectors are then extracted according to Section 3.1 and labelled with the residual
drum offsets,11 since no ensemble performance data exists. Train, validation and
test labels are retained from the GMD specification. The models are trained
using the Adam optimiser (Kingma & Ba, 2014) with a 0.001 initial learning
rate and 0.3 dropout for the 2-layer networks.

9 A list of research datasets related to music information retrieval is maintained
at https://www.audiocontentanalysis.org/data-sets/.

10 available at https://magenta.tensorflow.org/datasets/groove.
11 Thus, y measures the distance to the drum hit from its quantised position.

While (Gillick et al., 2019; Makris et al., 2019) used 16 steps per bar, we chose
a quantisation step of 24, to better account for triplets and swing.
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These pretrained models are ready to use as offline, audio-agnostic expressive
drum part interpreters (similarly to (Gillick et al., 2019)) but can also be fine-
tuned through subsequent performances. Fine-tuning takes place in an offline
phase between live human-machine duet takes, where we also allow the use of
(a subset of) the GMD as a validation set to avoid overfitting.

Both models use a mean squared error loss. For training, only hits with a
corresponding target onset are fed into the loss function, to avoid onset detection
errors or outliers propagating over sustained target notes. In the validation phase,
all realised hits count towards computing the loss.

4 Evaluation

Evaluating interactive machine learning systems is a difficult undertaking
(Boukhelifa et al., 2018). In addition, adaptive musical agents pose specific
challenges (Pasquier et al., 2016). By definition, the execution results are in
flux, which impacts the assessment methodology. For the pretrained models we
provide error measurements. We then conduct two experiments that highlight
our adaptive training pipeline’s viability for different use cases.

4.1 Baseline

Table 1 shows error metrics for our proposed models, pretrained as described in
Section 3.3. We provide a notebook12 allowing for reproduction of the results.

Model MSE [/bar] MSE [16th note]

No µtiming 0.000072 0.018679

Basic LSTM 0.000060 0.015505

Seq2Seq 0.000055 0.014260

Table 1. Mean Squared Error rates of the proposed models over the GMD test set.

Note that, while our error metrics are significantly lower than those reported
by Gillick et al. (2019), we also start from a tighter quantised, zero-offset base-
line. This is due to the different objectives of the two model classes: GrooVAE
generates patterns on a 16th note grid, while rolypoly~ performs particular
piece timings13—hence the finer quantisation of our GMD parsing.

4.2 Experimental

Starting from the pretrained models, our first experiment tests the ability to
morph rhythms away from a notated pattern, by playing a different timing se-
quence on top. As target audio we use direct input electric guitar.

12 See https://github.com/RVirmoors/rolypoly/blob/master/py/rolypoly.ipynb.
13 Also for this reason, we predict single overall timing offset values, rather than individ-

ual offsets for each drum, like GrooVAE. Spreading concurrent hits apart constitutes
flamming ; generating such drumming flams is outside our current scope.
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Fig. 1. Rhythm morphing over three training iterations. Score: dotted lines. ŷ: blue

stems. d̂iff : grey bars. Transition from straight (bottom) to swinging (top).

Figure 1 pictures the Seq2Seq model transitioning from a straight 4/4 beat to
a “swing” shuffle, where offbeats are pushed slightly later. To obtain the effect,
we expanded the guitar offset detection window to (t− durt

2.5 , t+
durt
2.5 ). Similarly we

were able to morph the pattern x--x--x- to three equally-distanced triplets.14

The second experiment simulates the typical use case, where a song is per-
formed multiple times and the basic LSTM model learns incrementally after
each take. In Figure 2 we plot the evolution of drum-target offsets over several
iterations. The agent is able to “tame” the variance of the guitar, and visibly
adapts to structural patterns in the piece.

Inference on the Seq2Seq model takes around 40ms on an i5 machine, which
is too slow for the shortest hits in the song; a possible remedy would be to pre-
dict several hits ahead. Moreover, we found a head-to-head comparison of the
two proposed models using the same recorded target audio not only theoretically
untenable (frozen guitars don’t react to realised drums), but also practically un-
feasible, due to the microtime jitter inherent in our Python-Max setup, which
causes stochastic drift over time. In this context, while the Seq2Seq model per-
forms marginally better in the GMD pretraining phase, its overall superiority
over the basic LSTM model remains an open question.

5 Discussion and Future Work

This paper introduced rolypoly~, an adaptive drum machine for real-time per-
formance. The project is open source, and to our knowledge unique in coupling
human-computer microtiming and learning iteratively without prior training on
duet data. Beyond this initial stage, there is ample room for further research.

14 See also https://github.com/RVirmoors/rolypoly/tree/master/ csmc-mume2020.
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Fig. 2. Moving average (period: 6 hits) of the timing difference between drum hit and
guitar onset. The baseline (thick, light gray) is the basic LSTM model pretrained on
GMD. Subsequent training runs for 5 epochs (Adam w/ l.r. 0.001) after each take.

Our process of defining y seeks to minimise drum-target offset jitter. While
our evaluation supports this intuition, it remains an open question whether this
formula is optimal or another strategy might prove more musically useful.

Structurally, while the models must remain lightweight, they may benefit
from a richer data representation of agent and human actions. One possible
route is the learning of a latent feature space of descriptors (Maezawa, 2019).
Moreover, a partial cause of the large variance seen in drum-guitar offsets might
be the detection step; we are considering other just-in-time algorithms (e.g. audio
alignment) to supplement or replace onset detection.

The rhythm morphing exercises raise the question of altering the notated
score: once a song is being played differently in a systematic way, it makes
sense to modify the underlying symbolic representation. Such a decision could
be offered interactively to the user or might be partially automated.

All of the above are to be approached in the context of building a multi-
timescale hierarchical system. Rather than treating tasks independently, we plan
to design agents that inform each other and interact. The first step in this
direction will be to add a tempo modelling (Burloiu, 2016) component.

Presently, we are working on modelling drum hit velocity, and porting the
inference code into a Max external using LibTorch, making the system more
reliable and accessible, while enabling more musical, human-centred, performer
and listener assessments (Boukhelifa et al., 2018; McCormack et al., 2019). Ul-
timately, as with the drum machines of the past 40+ years, it is user adoption
that will drive the viability of such a music performance tool.
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