
The control-synthesis approach for making
expressive and controllable neural music

synthesizers

Nicolas Jonason1, Bob L. T. Sturm1, and Carl Thomé2

1 KTH Royal Institute of Technology
2 Epidemic Sound

{njona,bobs}@kth.se, carl.thome@epidemicsound.com

Abstract. Deep neural networks have been successfully applied to au-
dio synthesis. Such neural audio generation models can efficiently learn
from data how to imitate a variety of instruments, such as piano and vi-
olin. However, effective control of these models is difficult. We introduce
the “control-synthesis approach” to make neural audio synthesizers more
controllable. This approach transforms user input into intermediate fea-
tures to condition a neural audio synthesis model. We demonstrate this
approach by implementing MIDI-controllable neural audio synthesizers
and generating several examples for audition.

Keywords: Neural Audio Synthesis, Music Synthesis, Deep Learning

1 Introduction

Recent work introduces neural synthesizers: deep neural networks trained to im-
itate sounds from an audio dataset. These approaches are attractive because
they learn how to reproduce timbres and pitches from audio recordings. They
suffer from some limitations, however. One system does not incorporate note-to-
note timbre dependencies, which are essential for expressively emulating certain
instruments like the violin. Other systems circumvent this issue by using contin-
uous user input, such as data manually input with a MIDI controller. But this
requires a lot of control data for a user to input. Might such control data be
generated by an intermediate model given low-resolution input?

This paper proposes a generic method for turning neural audio synthesis
models into musical synthesizers that are expressive and controllable (Jonason,
2020). We demonstrate the control-synthesis approach by transforming models
from the DDSP library (Engel, Hantrakul, Gu, & Roberts, 2020) into MIDI-
controllable synthesizers trained to mimic target instruments from unannotated
audio. We demonstrate the approach with two datasets and different MIDI input
files. Our results clearly show how the control-synthesis approach effectively
controls DDSP models to synthesize expressive music audio, but also show some
peculiar artefacts that merit further exploration. The implementation code and
audio examples can be found online.3

3 https://erl-j.github.io/controlsynthesis



2 Jonason, Sturm and Thomé

Fig. 1. The control-synthesis approach involves transforming low-resolution user input,
e.g., MIDI, into intermediate features, which are then input into a synthesis model.

2 Neural Audio and Music Synthesis

We now briefly review music synthesis using deep neural networks. WaveNet
(van den Oord et al., 2016) and WaveRNN (Kalchbrenner et al., 2018) both
generate audio signals in the time domain. While WaveNet uses a fully con-
volutional network with strided convolutions to increase the receptive field for
inference, WaveRNN uses a single layer recurrent network and a dual softmax
layer. DDSP (Engel et al., 2020) is a different approach, which integrates dif-
ferentiable classical signal processing modules in the machine learning model.
This can yield high-quality audio generation models with fewer parameters than
WaveNet and WaveRNN.

NSynth (Engel et al., 2017) uses a WaveNet-based auto-encoder to generate
musical notes given a temporal embedding and a pitch value. A unique feature
of NSynth is the interpolation between different timbres. However, since NSynth
is trained on individual pitches, it does not capture note-to-note timbre depen-
dencies. These can be important for emulating instruments like a violin. Fast
and flexible neural audio synthesis (FFNAS) (Hantrakul, Engel, Roberts, & Gu,
2019) uses a WaveRNN-based model for synthesis, but is controlled with contin-
uous loudness and pitch contours, similar to DDSP (Engel et al., 2020). Using
these to control a synthesizer results in more dynamic control.

3 The Control-Synthesis Approach

We first discuss the control-synthesis approach in theory, and then describe an
implementation of it.

3.1 Control-Synthesis Approach in Theory

The control-synthesis approach, as seen in Figure 1, uses a control model to
generate intermediate features to drive a synthesis model. These intermediate
features facilitate flexibility in the control of neural audio synthesis. While both
the control and synthesis models can be implemented without the use of machine
learning, the ability to automatically learn from data makes such approaches very
efficient and flexible.

Using intermediate features provides a way to combine different control and
synthesis models. First, it allows us to switch between different ways of control-
ling a synthesizer. For instance, we can extend a control model with additional



2020 Joint Conference on AI Music Creativity, Full Paper 3

Fig. 2. An implementation of a neural audio synthesizer using a control-synthesis
model. The input features MIDI pitch and velocity are converted to continuous pitch
and loudness contours by a bidirectional LSTM. A synthesis model then converts these
intermediate features into the resulting audio signal.

inputs to modulate performance, e.g., adding vibrato. Secondly, having a prede-
fined intermediate feature representation means we can combine control models
with synthesis models fitted by machine learning on different datasets, and vice
versa. This allows us to combine different aspects of datasets into one synthe-
sizer. For instance, we can combine the articulations of a certain dataset with
the instrument timbre of another. DDSP uses this principle to perform “timbre
transfer” (Engel et al., 2020).

3.2 Control-Synthesis Approach in Practice

Figure 2 diagrams an implementation of the control-synthesis approach. In the
following, we discuss each of these blocks.

Input features The input features we use are derived from the pitches and ve-
locities of MIDI note-on events over a 20-seconds duration. We create sequences
of pitch and velocity values at a sampling rate of 250 Hz. We scale the pitch
and velocity values to be within the range [0, 1]. Sections where no note events
occur are given a MIDI velocity value of 0 and are assigned the pitch value of
the preceding note event. All pitch sequences begin with the pitch value of the
first note, regardless of when it occurs.

Control Model Figure 3 shows our control model, which transforms the low-
resolution MIDI-derived pitch and velocity input features into intermediate fea-
tures: pitch and loudness contours. The control model is trained with features
extracted from audio recordings of a particular instrument. We first cut the
recordings into non-overlapping 20-second segments. We randomly select 80% of
the segments for training, and the rest we use for testing.



4 Jonason, Sturm and Thomé

Fig. 3. The control model created pitch and loudness contours from the input features.
These features first pass through dense blocks with 32 output channels each. The code
for these dense blocks comes from the DDSP library (Engel et al., 2020). Each dense
block consists of a dense layer, layer normalization and a leaky ReLU activation. The
outputs of the dense blocks are merged and fed to a bidirectional LSTM (BLSTM). The
output of the BLSTM is concatenated with the original input and passed to another
dense block. Each output channel is summed with weighted and biased versions of pitch
and velocity respectively.

We extract input and intermediate pitch features from audio segments in
the following way. We extract pitches and a measure of confidence of the pitch
estimates using the CREPE algorithm (Kim, Salamon, Li, & Bello, 2018).4 We
also extract the A-weighted loudness contour of the segment with code from the
DDSP library (Engel et al., 2020). We then offset the CREPE pitch estimate
such that the occurrence of equal-tempered pitches (based on A440 tuning) is
maximized. We detect note onsets and offsets by looking for pitch confidence
crossing a threshold or significant changes in pitch estimates. The threshold is
set by trial and error using the training data. Finally, to determine the MIDI
pitch of a note, we assume that the musical notes played belong to the 12-tone
equal temperament scale. The MIDI number of each note is determined by the
pitch closest to the time-averaged estimated pitch between the start and end of
the note event.

We then assign MIDI velocities to each detected note event according to
dataset peak A-weighted loudness value R using the following formula:

vMIDI(R;µ, σ) = R
µ

σ
σref + µref (1)

where µ and σ are the mean and standard deviation of the peak loudness of
all detected note events in the training data; and µref and σref are the mean
and standard deviation of MIDI velocity data in a reference MIDI dataset. We
use MAESTRO (Hawthorne et al., 2018). Velocity is capped within [0,127]. This
formulation is motivated to obtain a plausible distribution of velocity.

4 Technically speaking, CREPE estimates F0 but in this proof of concept we consider
it to be the same as pitch.



2020 Joint Conference on AI Music Creativity, Full Paper 5

Dataset Pitch RMSE Loudness RMSE

Violin train 8 cents 0.16 dbA
Violin test 67 cents 1.36 dbA

Flute train 60 cents 0.66 dbA
Flute test 180 cents 1.89 dbA

Table 1. Root mean square error on the pitch and loudness predictions of the control
model on training and test data.

We post-process the MIDI data by removing notes shorter than 20 ms in
duration, and then recasting the MIDI transcriptions into pitch and velocity
sequences as described above. More complex ways to convert audio to MIDI will
be explored in future work.

The control model is trained with a loss defined as the mean squared error of
the predicted intermediate features. We use mini-batch gradient descent (with
a batch size of 4) and ADAM with a learning rate of 3e-4. We stop training
when a model has stopped showing an improvement on the test set for about
750 epochs. Since the test set was used for selecting the model, the test error
might not reflect the generalization performance. For the violin data, this was
around 12k epochs; for the flute data this was around 6k epochs.

Table 1 shows some results of two control models. More detailed examples
can be found on the project website. We see a large difference between the
errors on the training and test sets, as well as between the two datasets. The
large difference between the training and test pitch errors is likely due to the
error accumulating in sections where no notes are active. We hypothesise that the
difference in error between each dataset is a consequence of the MIDI transcriber
being hand-tuned only on the violin dataset. This means it is more likely to make
errors on other datasets than on the violin set. Such errors make the task of the
control model harder.

Synthesis Model The synthesis model transforms intermediate features into
audio. The code for the synthesis model we use comes from the DDSP Python
library without modification.5 We train DDSP models having a harmonic plus
noise model (HNM) (Laroche, Stylianou, & Moulines, 1993) with 60 harmonics
and 65 noise band magnitudes. The decoder translates the loudness and pitch
contours into parameters of the HNM. The HNM then transforms these synthe-
sizer controls into audio. Convolution reverb is applied to the audio to simulate
the acoustic properties of the instrument body and recording environment. Sim-
ilarly to the weights of the decoder, the impulse response of the reverb is trained
on target data. More details can be found in (Engel et al., 2020).

To generate training data for the synthesis model, we used the preprocess-
ing code from the DDSP library (Engel et al., 2020). In addition to extracting

5 http://github.com/magenta/DDSP/blob/master/DDSP/training/gin/models/

solo instrument.gin



6 Jonason, Sturm and Thomé

Fig. 4. Time aligned piano-roll and spectrogram of the first three seconds of a neural
synthesized flute. Before the first MIDI note occurs the synthesized flute is active.

pitch and loudness contours, it segments the audio files into 4-second clips with
a 1-second hop-length. We train each synthesis model with the training code
provided by DDSP (Engel et al., 2020). We stop training when the spectral loss
reaches around 4.75.

Datasets We train two control-synthesis implementations, each with a different
set of audio recordings: one of solo violin (also used in (Engel et al., 2020)) that is
about 13 minutes in length,6 and the other of solo flute that is about 11 minutes
in length.7 We resampled all recordings to 16 kHz and mixed down to mono.

4 Evaluation

We evaluate the implementation presented in Sec. 3.2 using two out-of-training
MIDI files: “Für Elise”,8 and “Ode to Joy”.9 We also investigate how the models
perform in different parameter regimes by modifying note pitches, durations,
velocities, and tempo. Audio examples are available online.

These examples show that the system can synthesize both instruments in
realistic and expressive ways. However, we identify four artefacts in the synthe-
sized audio. Sometimes before any note is to be played the synthesizer produces
“spontaneous gibberish”, and example of which is shown in Fig. 4. During notes
with a long duration, one can sometimes hear a “looping” effect, which is similar
to sample-based synthesis where the sustain portion of a sound sample is being
replayed. We also find that at either low pitch or velocity, or short durations, the
sound can have an unrealistic timbre. Finally, the pitches of some synthesized
examples can sound a bit off-pitch.

We also synthesize examples with intermediate features created by a naive
interpolation of MIDI pitch and velocity input features. The interpolation comes

6 https://musopen.org/music/13574-violin-partita-no-1-bwv-1002/
7 https://musopen.org/music/24732-3-fantaisies-for-solo-flute-op-38/
8 www.8notes.com/scores/457.asp?ftype=MIDI
9 www.8notes.com/scores/11477.asp?ftype=MIDI



2020 Joint Conference on AI Music Creativity, Full Paper 7

from preprocessing the MIDI files in the same way we preprocessed the output
of the MIDI transcription when we generated data for the control model. There
are clear differences between the synthesized audio using the naive interpolations
and the ones using the intermediate features created by the control model we
create, particularly in the transitions between notes. The use of the control
model results in a performance that more closely matches the sound of the
target instrument, particularly in the transitions between notes. This indicates
that the model captures some note-to-note timbre dependencies, but this should
be verified through more careful testing and listening experiments.

We perform a few other experiments to test the flexibility of the control-
synthesis approach. First, we modulate the generated pitch contour with a si-
nusoid at 6 Hz. We compare this to using the sine wave to modulate the fun-
damental frequency control of the harmonic synthesizer of the synthesis model.
The difference between these two approaches is that the decoder of the synthesis
model receives the modulated pitch feature in the first scenario. This means the
modulation can, in turn, impact the inference of other controls of the HNM syn-
thesizer besides the fundamental frequency. Although the modulation of pitch
does result in a audible vibrato in the synthesis, we find it hard to detect a
difference between the two approaches.

In another experiment, we combine control and synthesis models trained on
different data. We train a control model on features extracted from recordings
of traditional Irish fiddle.10 We use the same MIDI input data as above, and
synthesize the intermediate features with the synthesis model trained on the
violin dataset. This audio output can be compared with the output of an instance
where both control and synthesis models were trained on the violin dataset.
While the outputs sound like a violin, they are noticeably different from each
other.

5 Discussion

The results of our experiments show that the control-synthesis approach enables
neural music synthesis models to generate expressive performances from low-
resolution input like MIDI. This addresses the lack of expressivity in current
MIDI-controlled neural music synthesis methods. Furthermore, we demonstrate
that the control-synthesis model allows us to creatively modulate the generated
performance. We also show that we can combine articulations and instrument
sounds from different recordings by training control and synthesis models on
different datasets.

Some of the synthesized examples have noticeable artefacts, especially when
the model is given input features outside ranges seen in training. We believe that
a few concrete modifications to the implementation could mitigate these issues.
The gibberish artefact can likely be solved by masking the loudness contour

10 www.discogs.com/Tommy-Peoples-An-Exciting-Session-With-One-Of-Irelands

-Leading-Traditional-Fiddlers/release/3629547



8 Jonason, Sturm and Thomé

when no MIDI notes are present. To address the “looping” artefact, we can in-
troduce “temperature” (Hinton, Vinyals, & Dean, 2015) into the control and/or
predictions of the synthesis model. The unrealistic timbre present in some ex-
amples could be addressed by using more training data, data augmentation, or
more complex methods, e.g., (Arik, Chen, Peng, Ping, & Zhou, 2018).

We made the assumption that the control model needs information on future
note events to generate realistic note transitions. This is the motivation for
having the LSTM be bidirectional. However, bidirectionality prevents use of the
system in a real-time setting. By instead accepting a short delay on the model
output, we could remove bidirectionality while still receiving partial information
about future note events, to enable the system to render note transitions in
streaming applications.

6 Conclusion

We propose and demonstrate the control-synthesis approach to turning neural
audio generation models into expressive and controllable music synthesizers. This
approach essentially factors music synthesis into two sub-problems. A control
model predicts intermediate features from user inputs, and then a synthesis
model synthesizes audio from these intermediate features. The idea of using a
separate model for controlling a synthesizer is not novel, e.g., (Maestre, Ramı́rez,
Kersten, & Serra, 2009; Arcos, De Mantaras, & Serra, 1998; Sommer & Ralescu,
2014; Donahue, Simon, & Dieleman, 2019). Derenyi and Dannenberg (1998) use
two models in series to simulate trumpet performances.

We create a particular implementation of the control-synthesis approach,
and perform a variety of experiments. These show we can control a neural audio
model to synthesize music with identifiable instrumental timbres. Another inter-
esting observation is that control-synthesis models can be nested. If we consider
the structure of the synthesis model used in our implementation, it follows our
definition of a control-synthesis model, where the control model is the decoder,
the intermediate features are the HNM parameters, and the synthesis model is
the HNM synthesizer and convolution reverb. The generic nature of the control-
synthesis approach means that it can be easily applied to other types of input
features and instrument models. Our results also show some artefacts, which can
be addressed in future work.

Acknowledgments

This work was completed as a collaboration between KTH Royal Institute of
Technology and Epidemic Sound. Additional guidance was provided by Daniel
Klevebring. Sturm is supported by ERC-2019-COG No. 864189 “MUSAiC: Mu-
sic at the Frontiers of Artificial Creativity and Criticism”.



References 9

References

Arcos, J. L., De Mantaras, R. L., & Serra, X. (1998). Saxex: A case-based
reasoning system for generating expressive musical performances. Journal
of New Music Research, 27 (3), 194–210.

Arik, S., Chen, J., Peng, K., Ping, W., & Zhou, Y. (2018). Neural voice cloning
with a few samples. In Proc. of NeurIPS (pp. 10019–10029).

Derenyi, I., & Dannenberg, R. B. (1998). Synthesizing trumpet performances.
In Proc. int. computer music conf. (pp. 490–496).

Donahue, C., Simon, I., & Dieleman, S. (2019). Piano genie. In Proc. int. conf.
intelligent user interfaces (pp. 160–164).

Engel, J., Hantrakul, L., Gu, C., & Roberts, A. (2020). DDSP: Differentiable
digital signal processing. arXiv preprint , abs/2001.04643 .

Engel, J., Resnick, C., Roberts, A., Dieleman, S., Eck, D., Simonyan, K., &
Norouzi, M. (2017). Neural audio synthesis of musical notes with wavenet
autoencoders. arXiv preprint , abs/1704.01279 .

Hantrakul, L., Engel, J. H., Roberts, A., & Gu, C. (2019). Fast and flexible
neural audio synthesis. In Proc. int. soc. music info. retrieval (pp. 524–
530).

Hawthorne, C., Stasyuk, A., Roberts, A., Simon, I., Huang, C.-Z. A., Dieleman,
S., . . . Eck, D. (2018). Enabling factorized piano music modeling and
generation with the maestro dataset. arXiv preprint , arXiv:1810.12247 .

Hinton, G., Vinyals, O., & Dean, J. (2015). Distilling the knowledge in a neural
network. arXiv preprint arXiv:1503.02531 .

Jonason, N. (2020). The control-synthesis approach for making expressive and
controllable neural music synthesizers (Unpublished master’s thesis). KTH
Royal Institute of Technology.

Kalchbrenner, N., Elsen, E., Simonyan, K., Noury, S., Casagrande, N., Lockhart,
E., . . . Kavukcuoglu, K. (2018). Efficient neural audio synthesis. arXiv
preprint , abs/1802.08435 .

Kim, J. W., Salamon, J., Li, P., & Bello, J. P. (2018). Crepe: A convolutional
representation for pitch estimation. In Proc. ieee int. conf. acoustics, speech
and signal process. (pp. 161–165).

Laroche, J., Stylianou, Y., & Moulines, E. (1993). Hnm: a simple, efficient
harmonic+noise model for speech. In Proceedings of ieee workshop on
applications of signal processing to audio and acoustics (p. 169-172).

Maestre, E., Ramı́rez, R., Kersten, S., & Serra, X. (2009). Expressive con-
catenative synthesis by reusing samples from real performance recordings.
Computer Music Journal , 33 (4), 23–42.

Sommer, N., & Ralescu, A. (2014). Towards a machine learning based control
of musical synthesizers in real-time live performance. In Proc. modern
artificial intell. cognitive sci. conf. (pp. 61–67).

van den Oord, A., Dieleman, S., Zen, H., Simonyan, K., Vinyals, O., Graves, A.,
. . . Kavukcuoglu, K. (2016). Wavenet: A generative model for raw audio.
arXiv preprint , abs/1609.03499 .


