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Abstract. This paper proposes a method to facilitate labelling of music performance videos with
automatic methods (3D-Convolutional Neural Networks) instead of tedious labelling by human
experts. In particular, we are interested in the detection of the 17 musical performance gestures
generated during the performance (guitar play) of musical pieces which have been video-recorded.
In earlier work, these videos have been annotated manually by a human expert according to the
labels in the musical analysis methodology. Such a labelling method is time-consuming and would
not be scalable to big collections of video recordings. In this paper, we use a 3D-CNN model from
activity recognition tasks and adapt it to the music performance dataset following a transfer learning
approach. In particular, the weights of the first blocks were kept and only the later layers as well
as additional classification layers were re-trained. The model was evaluated on a set of 17 music
performance gestures and reports an average accuracy of 97.9% (F1:77.8%) on the training set and
85.7% (F1:38.6%) on the test set. An additional analysis shows which gestures are particularly
difficult and suggest improvements for future work.

1 Introduction

The main purpose of this paper is to investigate if state-of-the-art deep learning techniques can be utilized
to perform tedious tasks in labelling of videos. Videos capturing music performance are particularly
difficult to analyze, as the individual gestures performed by the artists may be very subtle and difficult
to label, even by human experts. This work builds on an existing musical analysis methodology proposed
by Coorevits et al. in (Coorevits, Moelants, Östersjö, Gorton, & Leman, 2015). The contribution of this
work is adapting a deep-learning based video analysis model to the task of musical performance analysis
and thereby enabling it to recognize facial and body expressive gestures. Those gestures were defined by
Coorevits et al. in the article ”Decomposing composition” (Coorevits et al., 2015) and include, among
others, shoulder movement, hands movement, or facials expressions, such as closed eyes. The aim of
this paper is to be able to detect and identify automatically those gestures for a given video-recorded
performance. The desired solution is a machine learning model which, given a set of videos as input, can
generate a list of detected features for each video segment. The chosen architecture is based on Kensho
Hara’s et al (Hara, Kataoka, & Satoh, 2018) ResNet-34, a 3D convolutional neural network (3D-CNN).
It is adapted to suit the task of music performance analysis, i.e., to recognize 17 predefined gestures.

2 State of the Art

Video Analysis with machine learning techniques has emerged in the field of action recognition in
video streams with several small datasets, like HMDB-51 (Jhuang, Garrote, Poggio, Serre, & Hmdb,
2011) and UCF-101 (Soomro, Zamir, & Shah, 2012) and most recently with larger, like ActivityNet
(Caba Heilbron, Escorcia, Ghanem, & Carlos Niebles, 2015) and Kinetics (Carreira & Zisserman, 2017).
The most relevant related work uses 3D-CNN architectures (called space-time CNNs with long-term
temporal convolutions) (Varol, Laptev, & Schmid, 2017), they achieve 92.7% on UCF-101 and 67.2% on
HMDB-51. For action detection in video streams, such a 3D variant of the CNNs has been proven to be
more efficient than the 2D variant, i.e., (Hara et al., 2018) reports an accuracy of 94.5% on the UCF-101,
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70.2% on the HMDB-51 and 78.4% on the Kinetics dataset. This architecture is used as underlying base
architecture in this present paper.

Music Performance Analysis emerged as a field of study in music psychology and musicology in
the late 1980s, with an interest in a wide range of perspectives, including the role of gesture, performer-
performer interaction, social contexts, etc. (Bowen, 1996). Theories of embodied music cognition posit
that music is a multimodal medium experienced not only through sound, but also through visual and
kinematic cues. These theories have given rise to a further study of musical performance through the
analysis of movement data captured during performance (Godøy & Leman, 2010). In order to gain a
deeper insight, recent multi-method approaches combine quantitative and qualitative data (Coorevits
et al., 2015; Gorton & Östersjö, 2019). Gesture analysis so far, requires additional body sensors (see
also in the next section) and/or human labelling. Although quantitative analysis of video data of music
performance alone appears to be a fruitful field for further development, it remains an under-researched
area, which could benefit from the employment of recent deep learning techniques.

3 Dataset

The dataset used in this work takes the videos recorded in the (human expert) study by Coorevits et
al. (Coorevits et al., 2015), accompanied by the qualitative coding resulting from the analysis that was
carried out as part of this previous study. Two rehearsals and two concert recordings were recorded, with
audio, video and movement data. In this paper, only the video data is taken for analysis. The audio data
did not help to improve the accuracy of the results. The movement data from the other sensors have been
used by the human expert to generate the ground truth.

In total, the analytical process resulted in a total number of 17 codes, which corresponds to the
classes discussed below. Most of the codes, such as “nodding” and “expressive shoulder movement”, are
body movement that has no direct result on technical delivery and does not explicitly produce sound.
“Vibrato” was also included as a code even though it does not refer to a particular gesture, and rather has
an immediate effect on delivery, particularly in the shaping of material, and obviously it does modulate the
sound even if not producing it. But what all the codes have in common is that they represent corporately
perceived bodily strategies for the management and communication of the evolving musical structures.
For a further description of these coded gesture types, see (Gorton & Östersjö, 2019, pp. 67-77). The
labels were selected every 16 video frames, as required by the 3D CNN architecture (see Section 4). The
total number of frames in the current video is 11803, therefore there are in total 737 samples. 20% of the
data were used as the test set and 80% as the training set. The total number of samples are 1746, 1424
in the training set and 322 in the test set. Table 1 shows the class distribution in the training and test
set.

Table 1. Class distribution.

Class Train Test

Vibrato 36 8
Upbeat in head movement 22 2
Repositioning guitar 29 4
Nodding 147 32
Frowning 43 11
Freeze 45 11
Facial expression 256 51
Eyes closed 77 12
Expressive shoulder movement 154 37
Expressive head movement 47 8
Expressive preparation 60 11
Right hand round 131 33
Minimal movement 167 59
Lifting head 77 18
Left hand gesture 92 17
Physical energy 36 6
Sympathetic body movement 5 2
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4 Methodology and results

The 3D-CNN network architecture proposed in this paper is an adapted version of (Hara et al., 2018). In
this paper, we replace the final layer with a few ReLU layers and a final sigmoid layer having two outputs
per class (one for present, one for not present). These two outputs are required as we have a labelling
task, i.e., several labels can be present at the same time frame. The variants of ReLU layers investigated
in this study are shown in Table 2. In the current work, the Minimum Square Error (MSE) loss function

Table 2. NN architectures and their corresponding accuracy on the training set

No NN-Architecture Pre-Trained Accuracy

1 100 + 50 No 83%
2 300 + 150 + 100 + 50 No 80%
3 200 + 50 No 62%
4 200 + 50 Yes 80%
5 200 + 50 + ReLUs Yes 97.9%

Fig. 1. Original Kensho Hara’s et al 3D-CCN model

Fig. 2. Proposed architecture

was used. Most of the weights of the original architecture were kept (transfer learning). This is done in
order to keep the ability of the model to detect meta-features related to action recognition that can be
useful for our goal. The weight that were not kept are:

– Fourth block; Instead, the fourth block of the network (formed by six residual convolutional layers)
has been retrained. This layer outputs a 512-vector, which can be considered an embedding vector of
the 512 most important features for each class.

– Final block; Instead, the final block has been customized and substituted by a set dense connected
layer using ReLU as activation function. This is performed in order to make the model able to learn
the new meanings of the meta features extracted in the previous block. Sigmoid activation function is
used instead of the Softmax, because Softmax brings the problem of a decision boundary; two outputs
are often a better alternative, as in this case.

The input of the model is 16 frames (as required by the 3D-CNN model), and the output is a 2D-
vector. The first element is the likelihood that the input belongs to the given class and the second element
is the likelihood that the input does not belong to the given class. An example architecture (architecture
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5 from Table 2) can be seen in Fig. 2. Noteworthy, there are in total 18 CNNs. Each of them calculates
the likelihood of an input sample belonging or not belonging to a class. This might be due to the big
conceptual differences of the individual classes which could be mitigated by a larger architecture (but
could lead to overfitting as we only have 1424 training sequences). Notice that we added an extra class
named normal play, when all the other classes are not present, leading to 18 classes to be recognized. The
experiments performed on a single GPU machine (NVIDIA GTX 1080 TI) using Jupyter notebooks and
Anaconda environment.

Table 2 shows the training accuracy for the different architectures. The best architecture reports
an average accuracy of 97.9% (F1:77.8%) on the training set and 85.7% (F1:38.6%) on the test set.
Tables 3 and 4 show the accuracy for every individual class as well as precision, recall, and the F1
score which combines precision and recall for better comparison. Noteworthy, the precision and recall
are rather low for some classes. The main reason for that is the unbalanced dataset: there are much less
positive samples than negative ones. Furthermore, some gestures seem to be ambiguous (expressive or
sympathetic movements) or would require additional sound (vibrato). Classes with high precision and
recall are highlighted in bold. One can see that precision and recall are much higher on the training set,
indicating overfitting. Figure 3 shows more details in confusion matrices of selected classes. Measures to
overcome this problem are presented in section 5.

Table 3. Evaluation results - training set

Class Precision Recall F1 Accuracy

Vibrato 0.972 0.972 0.972 0.990
Upbeat in head movement 0.950 0.864 0.655 0.990

Repositioning guitar 0.081 0.655 0.144 0.947
Nodding 0.966 0.980 0.973 0.986

Frowning 0.952 0.930 0.941 0.990
Freeze 0.978 0.978 0.978 0.986

Facial expression 0.869 0.988 0.925 0.952
Eyes closed 0.987 0.987 0.987 0.995

Expressive shoulder movement 0.974 0.987 0.981 0.981
Expressive head movement 0.932 0.872 0.901 0.990

Expressive preparation 0.966 0.933 0.949 0.986
Right hand round 0.928 0.977 0.952 0.962

Minimal movement 0.964 0.958 0.961 0.966
Lifting head 0.976 0.532 0.689 0.952

Left hand gesture 0.989 0.989 0.989 0.986
Physical energy 1.000 1.000 1.000 1.000

Sympathetic body movement 0.000 0.000 0.000 0.976
Normal play 0.000 0.000 0.000 0.986

Average 0.778 0.979

5 Conclusion

The most important risk of our approach is the generalization. Our model has a very poor performance
with samples never seen before.

In future work, we will consider using a simpler model, such as an SVM, try regularization techniques
to achieve better generalization results and data augmentation. The current dataset is small and therefore
problematic, but the training accuracy points to this technique being promising for further study.

A limitation of the present study was that the audio data was not taken into account. Previous
research on multimodal machine learning (Baltrusaitis, Ahuja, & Morency, 2019), indicates that analyses
that relate data from several modalities might capture complementary information that is otherwise not
apparent in individual modalities on their own. Thus, future work will integrate the proposed video
analysis into a multimodal approach combining quantitative and qualitative methods.

Acknowledgements. The authors would like to thank Killian Murphy for the initial preparation of
the dataset.
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Table 4. Evaluation results - test set

Class Precision Recall F1 Accuracy

Vibrato 0.167 0.125 0.143 0.920
Upbeat in head movement 0.333 0.500 0.400 0.981

Repositioning guitar 0.021 0.250 0.038 0.660
Nodding 0.667 0.688 0.677 0.858

Frowning 0.750 0.273 0.400 0.939
Freeze 0.800 0.727 0.762 0.967

Facial expression 0.532 0.824 0.646 0.689
Eyes closed 0.600 0.750 0.667 0.939

Expressive shoulder movement 0.634 0.703 0.667 0.821
Expressive head movement 0.000 0.000 0.000 0.929

Expressive preparation 0.500 0.182 0.267 0.925
Right hand round 0.361 0.394 0.377 0.708

Minimal movement 0.889 0.678 0.769 0.835
Lifting head 0.800 0.222 0.348 0.896

Left hand gesture 0.571 0.471 0.516 0.896
Physical energy 0.200 0.167 0.182 0.939

Sympathetic body movement 0.000 0.000 0.000 0.802
Normal play 0.065 0.154 0.091 0.726

Average 0.386 0.857

Fig. 3. Confusion matrix per class - Test set
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