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Abstract. Musical models created using machine learning techniques can be 
hacked, repurposed and spliced in many new ways. The current generation of 
models is not at any level of simulated consciousness sufficient to trigger 
immediate ethical blocks, and stands open to systems surgery. Beyond morphing 
of inputs and outputs, hidden layers of deep learning models may themselves be 
actively stimulated and substituted, from unit weights and biases to activation 
functions. Layers from multiple networks may be swapped and interpolated, from 
single units to complete layers. The hybridity of musical formation takes place at 
the level of model internals, in artistic transformations beyond standard transfer 
learning. This activity of AI code bending is dubbed here ‘hybrainity’, and 
alongside theoretical discussion of its origins, potential and ethics, examples of 
hacking particular machine learning models for new creative projects are 
provided, including applications in live performance and audiovisual generation.  

Keywords: Hybrid models; music AI; audiovisuals; machine learning; deep 
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1   Introduction 

Machine models are highly open to creative manipulation, as music AI provides new 
angles on the musical mind. This paper owes a debt to the artistic approach to machine 
listening algorithms conducted by Bowers and Green (2018); here machine learning 
algorithms are creatively exploited to similar artistic ends. The act of creative tampering 
within software, of ‘code-bending’ is relevant (Bergstrom and Lotto 2015), as is the 
practice of embracing glitches (Cascone 2000). 
   Central to this research is the idea that the notion of a brAIn transplant, of mind 
swapping or moving a brain to a new host, can provide artistic stimulation. It is a 
recurring literary device in popular culture, as illustrated by Edgar Rice Burroughs' The 
Master Mind of Mars (1927), Robert Sheckley’s MINDSWAP (1966), The Star Trek 
episode Spock’s Brain (1968), The Man with Two Brains (1983), Big (1988), Jumanji: 
Welcome to the Jungle (2017), and many more. There are earlier precedents in 
Hinduism (Kumar and Mahapatra 2009), great enthusiasm in the transhumanist 
movement (O’Connell 2017), and philosophical consideration (Snowdon 1991), even 
if such procedures in wetware remain far from science fact; the only successful monkey 
head swap led to the host’s death in nine days from immune system rejection, and 
human nerve tissue is very prone to damage. The level of a cultural exchange is more 
amenable, memetic transfer not requiring immunosuppressant drugs.  
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   There has been an explosion of interest in machine learning for computer music in 
recent years, particularly with research into deep learning over large training corpora 
(Briot et al. 2017; Choi et al. 2017). New models, such as autoencoders, Generative 
Adversarial Networks (GANs), and Long Short Term Memory (LSTM) Recursive 
Neural Net (RNN) sequence models, are ripe for exploitation. All have been used in 
both the audio and symbolic music representation domains.  
   In terms of the swapping of musical information between models, we might point to 
many existing approaches to cross-synthesis and style transfer, exemplified by signal 
processing devices such as vocoding and interpolation between models in spectral 
modelling synthesis, or by symbolic domain algorithmic composition projects such as 
David Cope’s work (Cope 2001). Though Cope later destroyed his own database, 
hindering reproducibility for researchers, he observed that in recreating the style of 
particular composers he often salted a corpus intended to represent a particular 
composer with further works from their historical contemporaries, and he explored 
hybrid models derived from mixing corpora. Transfer learning is an explicit method of 
reusing previously trained models, particularly the earlier layers responsible for feature 
detection in an end-to-end system, ahead of substituting one or more of the final layers 
or an additional further network, to be trained on a novel problem (Choi et al. 2017b). 
It doesn’t normally proceed with artistic intent, including on intermediate layers.  

 

 
 

Fig. 1. Points of intervention between two (or more) models, from inputs (source corpus) 
through the training stage, then on to already trained models, and their outputs 

 
   With respect to splicing and hacking machine learning models, Figure 1 illustrates 
many points of intervention. Coupling of two or more models can occur at the stage of 
inputs, of outputs, or upon internal layers. Continuous interpolation and morphing is 
possible, as well as discrete substitutions and swaps. The diagram could continue to the 
right and place more cross-connections to introduce further models beyond two; model 
training has been simplified for the clarity of the diagram eliding separate training, 
validation and test sets. Training tends to be a slow process, but running of a trained 
model can be carried out live, and interactive interventions will tend to be in the latter 
situation (though there are online trained machine learning algorithms that develop on 
the fly). The sorts of model interactions possible range from gentler interventions 
mixing up corpuses and cross-fading outputs, to joint training with interference from 
one model to the other, and Frankensteinian hybrid models (Todd and Werner 1999). 
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Action between models can place any model as primary and another receiver, or blend 
halfway, illustrated by the bidirectional horizontal arrows. The vertical arrows are also 
all bidirectional rather than simply top-to-bottom to encompass cases of feedback, such 
as audio outputs joining a new corpus for training, feeding into learning algorithm 
parameters, etc.    
   Two case studies now follow in the manipulation of learning models. Section 2 
explores spectral domain autoencoders as audio effects units, hacked through live 
interpolation of models at the level of internal layers, both pre (weights and biases) and 
post (on outputs) calculation, as well as live synthesised stimulation of the units at any 
layer. Section 3 investigates an audiovisual model built by passing information between 
an audio domain LSTM sequence model, and visual domain GAN variant, generating 
creative outputs through navigation of the latent space and through dynamic 
reconnection of convolutional layers. The creative and ethical implications of such 
work are then further discussed.  

2   Activating Allotransplanting Autoencoders 

Autoencoding neural networks have shown great promise as new synthesisers and 
effects units acting directly on audio signals, operating in the time domain or the 
spectral domain (Colonel et al. 2017, Engel et al. 2017, Roche et al. 2018, Sarroff and 
Casey 2014). Both shallow and deep encoder/decoder networks trained over 
spectrograms derived from corpora of audio files are considered here. In some cases, 
the Open-Unmix deep learning source separation algorithm was first run to isolate a 
stream (Stöter 2019), for example, the vocoded vocals from New Order’s Ecstasy 
(1983).  
   Initial Web Audio API web browser experiments used convnet.js 
(https://cs.stanford.edu/people/karpathy/convnetjs/), though a github project was 
subsequently set up demonstrating live manipulation of deep networks both in 
javascript, and for a plugin (written in C++) for the SuperCollider audio programming 
language (https://github.com/sicklincoln/Keras-to-Realtime-Audio). Networks are first 
trained via the keras python library with librosa (https://librosa.github.io/librosa/) used 
for audio file analysis, allowing much faster training over larger corpora than pure 
javascript (this can give a difference of minutes compared to hours!). Trained models 
were exported via ONNX (https://onnx.ai/) for javascript, or with Kerasify 
(https://github.com/moof2k/kerasify) for C++.  Subsequent to loading a model, the C++ 
plugin utilised a custom implementation of a deep neural network for its internal data 
structure, to make it straight forward to explore the interpolation of layers, signal 
injection, activation function substitution and other manipulations; kerasify’s own code 
was too slow for effective realtime work. The ONNX route was able to cope with more 
types of network model, but was trickier to modify on the fly; convnet.js was more 
flexible for experimentation than ONNX for javascript. Web Audio API work utilised 
the MMLL library (https://github.com/sicklincoln/MMLL) for audio file analysis, both 
before convnet.js training, and for live deployment of trained models, including 
realtime control from analysis of microphone input and GUI widgets (Collins and 
Knotts 2019). The web browser code has the advantage of facilitating the creation of 
interactive systems easily shared with musicians via a single weblink, rather than 
requiring a SuperCollider plugin build for a particular operating system.  
   Finding the right network architecture and hyperparameters required many 
experiments, with some hints from the spectral autoencoder papers mentioned above. 
Working at 44.1kHz sampling rate, all layers were fully connected to their 
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predecessors, and inputs were log magnitude spectra (0.5*log(power+1)*scalefactor), 
normalised within 0 to 1 by a scale factor obtained from the audio corpus (after Engel 
et al. 2017 rather than the magnitude spectra of Colonel et al. 2017; power spectra also 
performed poorly); scalefactor=0.18326653390262 was derived from the maximum 
value seen across many audio files. 
   Two successful lower latency architectures used with convnet.js were:  

 
o A shallow network based on a 1024 point FFT (512 hopsize, 512 magnitudes 

with Nyquist bin zeroed), with three layers: 512 inputs, a 128 sigmoid 
activation function hidden layer, and 512 outputs (paraphrasing Sarroff and 
Casey 2014 including quarter size hidden layer)  

o A deep network in hourglass form based on a 2048 point FFT (1024 hop size, 
1024 magnitudes with Nyquist bin zeroed): 1024 inputs, 512 fully connected 
ReLU activation layer, 256 neuron sigmoid activation layer, 512 ReLU layer, 
1024 output (following Colonel et al. 2017)  

 
256 unit input and output layers led to very poor results, with too many horizontally 
continuous low pitches howling in the re-synthesis. 4096 point FFT/2048 unit input and 
output layers were more reliable in training, but traded off latency and greater runtime 
cost; this FFT size became standard for the keras experiments, and had the helpful side 
effect of reducing the number of network prediction calculations per second, avoiding 
the situation where network calculation takes longer than realtime CPU availability. No 
great advantage accrued artistically from experiments with larger input sizes based on 
the inclusion of past spectral frames, only slower training and with more parameters 
increasing model size and realtime calculation time. Training with the adadelta Trainer 
in convnet.js was more reliable in convergence (l2_decay: 0.001, batch_size: 100) than 
stochastic gradient descent with momentum. In keras, the adam optimiser with mean-
squared error (MSE) loss was the standard choice, typically with batch size 50.  
   With convnet.js, for 100 epochs, training of the first architecture might take around 3 
hours, and the second architecture 5 hours. Some experiments used fewer epochs of 
training, since under-fitting could be creatively rewarding. The typical corpus for 
training was a three to four minute pop song. For example, with Radiohead’s Idioteque 
this gave for the first model above 26628 spectral frame training instances, and after 
ten epochs of training, an L2 norm error of 0.22155, down from initial epoch 2.88624. 
   In keras, training was orders of magnitude faster, often a matter of minutes rather than 
hours, enabling training over many more epochs, and many more audio files’ worth of 
source spectra.  
   Once networks were trained, they were activated in unconventional ways:  
 

• Running the network on highly unrelated unseen input 
• Morphing two models live at the level of swapping particular layers 
• Activating a hidden layer of a network via direct sound synthesis, or injection 

of another audio signal 
 
   Direct sound synthesis or sound injection was used to set hidden layer activations in 
contrast to Sarroff and Casey’s (2014) exploration of MIDI controllers. Interesting 
effects in latent activation were achieved by using noise sources, by a Karplus-Strong 
algorithm applied to an initial noise buffer, and by one co-prime frequency oscillator 
per hidden unit. A second audio signal was also injected directly into hidden units, 
rather than at the input.  
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   For live re-synthesis, input phase was stored and re-used. These live networks could 
be run at around 20-30% CPU on a core (as opposed to 100% CPU training), and were 
low latency based on only the delay to fill an FFT buffer, transform and run through a 
network, IFFT, and enter into overlap add resynthesis. Thus for 512 sample hopsize, 
delay was on the order of 11-23 milliseconds (512 until next FFT triggered, 512 fade 
up with next overlap add, 1024 samples of input affecting over two output windows).   
   A further precedent to this work is the exploration of Echo State networks for sound 
synthesis, exploiting the inherent feedback loops within a reservoir of neurons 
(Holzmann 2009, Kiefer 2019). For our networks, output could be fed back to the input, 
or even fed back (suitably subsampled or downsampled as necessary) to an intermediate 
layer, or cross coupled at various stages between two or more trained networks.  
   A particularly noise music worthy interaction was achieved by turning up the output 
gain and working with live voice control; the frequency content of the voice (sibilant 
vs low growl for instance) led to related spectral responses found in the training sound 
file, creating an interesting hybrid modulation.   
   Network layers could be interpolated between two models. The SuperCollider UGen 
PV_DNNMorph was built to make this available as a live facility after loading two 
models. A user could choose which layer to interpolate and the interpolation parameter, 
or whether to interpolate the weights and biases (“pre”) or the output after activation 
function (“post”), all adjustable on the fly to determine the network to be used at that 
moment. Interpolation of weights and biases between layers typically leads to worse 
performance than either pre-trained net on given data, but is musically interesting in 
introducing non-linear distortion to the reconstruction. Figure 2 demonstrates the effect 
on reconstruction scores (MSE) on moving from model 1 to model 2, tested via model 
1 data. Figure 3 does the same with model 2 to model 1 over model 2 data.  
   A further SuperCollider UGen, PV_KerasifyActivationFromBuffer, enables direct 
stimulation of the units in a particular  layer, with the choice of layer itself dynamically 
controllable; the buffer of activations simply has to be big enough to cover the 
maximum number of units in any layer. This leads to some rich sounds, often of a 
‘spectral synthesis’ flavour given the phaseless log magnitude spectrum creation, but 
modulated via the net’s training on particular sound file(s); direct stimulation at later 
layers led to greater higher frequency content activation, whereas earlier layers tended 
to keep more constrained in spectral envelope (unsurprisingly, given the greater 
influence of the training data over weights used in subsequent calculation). Audio 
examples and code are at https://composerprogrammer.com/remixingAIs.html  

 
Fig. 2. Morphing in interpolation parameter t from model 1 (left) to model 2 (right), plotting 

mean squared error (MSE) loss on model 1’s training data 
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Fig. 3. Morphing in interpolation parameter t from model 2 (left) to model 1 (right), plotting 

mean squared error (MSE) loss on model 2’s training data 

3   Audiovisual Network Bending 

In a further example of ‘Hybrainity’ that exploits the multimodal potential of 
contemporary neural network architectures, we demonstrate how audio and visual 
models can be interactively connected to create audiovisual hierarchical systems. These 
systems, although trained separately on a variety of sound and image corpora, can be 
configured to generate interesting and novel predictions based on input from each other, 
even in real-time, for the purposes of exploring potential creative outcomes for 
composers and visual artists. In these cases, different audio and visual representations 
from separate, pre-trained artificial neural networks are used as a means to modify and 
control the generation of new sound and image outputs. 
   As a potential use case, we have extended our work for the real-time control of 
generative audio sample synthesis (Grierson et al. 2019) using LSTMs, and combined 
it with a new real-time image synthesiser based on the Progressive GAN model (Karras 
et al. 2017). The model structure for the audio generator follows the same approach in 
Mezzanine Vs. MAGNet (https://github.com/Louismac/MAGNet), which creates 
novel sequences of audio magnitude spectra which are then re-synthesised as PCM data 
by phase reconstruction (Griffin and Lim 1984, LeRoux et al. 2010). Python versions 
of this software are available on the web (https://github.com/ual-
cci/music_gen_interaction_RTML), where a complete series of audio examples 
produced by the system can be found, including examples of real-time use. The image 
generation uses a novel technique called ‘Convolutional Layer Re-Connection’; a real-
time demonstration is at https://www.youtube.com/watch?v=w24XcLon1Ns. This 
software allows progressive GAN models to be interactively controlled through 
interpolation and Network Bending approaches, where weights are interactively 
manipulated to control visual outcomes. 
   A diagram demonstrating the technique in a Creative AI pipeline is shown in Figure 
4. We use a modified neural network model, the ‘Re-Connected’ GAN, in place of a 
standard progressive GAN without issues. In the diagram below, the LSTM model 
produces spectral frames interactively, and these are visualised by splicing the 
generated spectral frames as part of the Re-Connection approach. In this way, audio 
spectral frames are used as an auto-encoded feature representation with a Re-Connected 
Progressive GAN model. Using the large strength of the reconnection operation, we 
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can generate a range of potential visual outcomes that are tightly coupled to the spectral 
representations, both temporally and also across the complex space of the 
multidimensional vectors within the Re-Connected model. Importantly, the outcomes 
are potentially quite flexible to the user; the outputs can be both highly abstract and 
also maintain significant shapes and details from the original generative model. This is 
among the first hierarchical multimodal model of its kind, and operates in real-time, 
allowing for entirely new control methods for generative neural network models. 
https://github.com/ual-cci/GAN_explorer#osc-listener--audio-visual-application-demo 

 

 
  

Fig. 4. Diagram of the multi-modal Audiovisual Network Bending architecture using LSTM, 
VAE and GAN approaches for real-time, interactive control of neural network inference. 

4   Discussion 

AI is not just machine learning; but learning is so critical to human music making, that 
no recent respectable AI lacks some sort of education. More radical approaches to 
subvert machine learning algorithms might deliberately miseducate otherwise worthy 
models (‘corrupting the young’). Human education can be more haphazard than 
laboratory-controlled machine learning, with a messier picking up of influences. A 
punk aesthetic might even look to minimise training. The artist Terence Broad has 
already taken this to the natural extreme with generative adversarial network models, 
training them on no external data and letting their internal competitive dynamics lead 
to interesting visual outputs (Broad and Grierson 2019).  
   Further possibilities for interventions in machine learning systems might include:  

o Voting irregularities in ensemble learning 
o k-Means or other unsupervised clustering algorithms updating cluster 

representatives based on dissimilarity rather proximity 
o Unrelated input and output training; setting up an arbitrary association, or 

deliberately impossible learning tasks 
o Growing or pruning neural nets over time, stretching out or shrinking layers 

(new nodes may have random connection weights and bias, or be seeded by 
some other input) 
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o Pointlessly over-complicated deep networks (‘too many layers Mr Mozart’) 
o Multi adversarial learning (Durugkar et al. 2016), with a confused fight 

between many discriminators and generators, all in conflict analogous to a 
richer human debate 

Whilst machine learning purists concerned with maximising performance on 
engineering tasks may baulk at this license, fearing that such exploration is more likely 
to obfuscate understanding of learning algorithms’ workings, these suggestions echo 
the artistically stimulating machine listening corruptions of Bowers and Green (2018). 
   The notion of remixing an AI has headier ethical implications the more developed 
our AI technology becomes (Collins 2011, Holzapfel et al. 2018, Sturm et al. 2019). 
Changing an AI’s mind, beyond gentle debate between Turing-test-passing 
conversationalists, heads into the moral and psychological issues of brain washing 
(Taylor 2017). It would be hard to argue for any consciousness and moral rights for 
current generation models, but AI researchers do have a responsibility to consider such 
issues ahead of time (Tegmark 2018). The AIs themselves continue to fail to embed 
socially as autonomous agents; it is the human researchers who set agendas and act to 
promote their own research interest. Initiatives such as safe interactive music AI 
playgrounds (Bown, Carey and Eigenfeldt 2015) may be medium-term havens for the 
sharing of musical BrAIns.  
   The mind-body problem in philosophy (McGinn 1989) has been echoed by Thor 
Magnusson with respect to the common situation where a new instrument has an 
interface (body) and virtual synthesis engine (mind) (Magnusson 2019). In raising the 
spectre of mind swapping, we have simultaneously raised body swapping; the 
possibility of moving mind somewhere else necessarily takes a position on the 
feasibility of this duality. There is a rich possibility in multiple mind swapping, 
illustrated by the combinatorial dilemma of the Futurama episode The Prisoner of 
Benda (2010) and an associated mathematical theorem on restoring multiply swapped 
individuals to their original body via intermediaries (Singh 2013). All of this may or 
may not recommend a sub-field of transplantation studies for AIs to the reader. 
Nonetheless, ideas of hybridisation are key to creative practice, creative action is 
founded upon taking something of other people’s work into ourselves (Cole 2020; 
Knobel and Lankshear 2008), and we are memetically helpless to avoid some 
transmogrification in our lives.   

5   Conclusion 

This paper took a more artistic approach to music AI founded in the notion of brAIn 
surgery, operating on machine learning algorithms via live manipulation of audio and 
visual domain neural networks. Notions of mind swapping and hybridising of models 
(‘hybrainity’) were productive prompts to consider new avenues in music, music's 
powerful hybridity offering a natural route to creative outcomes for AIs. Interventions 
could operate at many stages and with many feedback routes in the application of 
machine learning, from corpuses, through training, to manipulation of the eventual 
runtime models. There is great potential for machines which prompt new music and 
new audiovisuals, and for creative computing to modulate machine learning research.  
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