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Abstract. DeepDrummer is a drum loop generation tool that uses ac-
tive learning to learn the preferences (or current artistic intentions) of a
human user from a small number of interactions. The principal goal of
this tool is to enable an efficient exploration of new musical ideas. We
train a deep neural network classifier on audio data and show how it can
be used as the core component of a system that generates drum loops.
We aim to build a system that can converge to meaningful results even
with a limited number of interactions with the user. This property en-
ables our method to be used from a cold start situation (no pre-existing
dataset), or starting from a collection of audio samples provided by the
user. In a proof of concept study with 25 participants, we empirically
demonstrate that DeepDrummer is able to converge towards the prefer-
ence of our subjects.

Keywords: drum loop generation, human in the loop, deep learning,
active learning

1 Introduction

Modern day music production typically relies on a variety of software tools.
These tools can help make music creation more accessible by streamlining an
artist’s workflow. Machine learning offers the promise that we may be able to
build tools that not only automate certain tasks, but also have a certain level of
understanding of an artist’s musical taste and vision. In this work, we address
the challenge of training a deep learning model to approximate the musical tastes
of a human user with limited feedback for the purpose of creating an interactive
tool that generates drum loops. This approach has a wide range of potential
applications, one of which is to help creators find inspiration. We encourage the
reader to view this from the perspective that this is a new method, and that it
is not a fully-fledged music production system yet.

We present a system that we call DeepDrummer, which is composed of three
main components: the interface, the critic and the generator. Users are faced
with an interface where they sequentially listen to individual drum loops and rate
them by clicking on either like or dislike buttons. For each user, we train a deep
neural network from scratch to predict their ratings based on an audio signal.
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This neural network constitutes the critic that judges the quality of drum loops
produced by the generator. The generator is a function that outputs random
grid sequencer patterns with 16 timesteps during which 4 randomly-selected
drum sounds can be triggered. We choose a very basic generator that does not
have any trainable parameters, and constitutes a source of patterns that has
few priors on musical structure. Combined together, the feedback from the critic
can serve as a powerful filter for the output of the generator. As a result, the
interface will present only the most relevant drum loops to the user for rating.

DeepDrummer learns interactively while gathering data from a limited num-
ber of human interactions. This is somewhat contrary to the common wisdom
in deep learning that training a useful deep neural network necessarily requires
hundreds of thousands, or even millions of data points. Since human preferences
are subjective by nature and may change as they are being measured, creating
a perfect model of a person’s musical preferences is a non-goal. We are instead
interested in creating a useful filter that is utilized to quickly explore musical
ideas in a way that is artistically useful.

The core contributions of this paper are the following:

– We present DeepDrummer, a system that features a novel approach to com-
bine deep learning models and active learning to generate drum loops based
on limited human interactions.

– We run an experiment with 25 participants to empirically measure the per-
formance of such a system, and we show that gains are made within 80
interactions (p-value 0.00013).

– We publish DeepDrummer as an open source software, as well as all the data
we collected during our experiment, which includes 3500 generated drum
loops and associated user ratings.

To accompany this paper, a video showcasing DeepDrummer being inter-
actively trained is available on YouTube3, and the source code is available on
GitHub4. The experimental data collected is available through a shared Google
Drive link5. The total size of the download is 2.5GB.

2 Related Work

The problem of music generation and creativity has attracted much attention
throughout community in recent years, in part because progress in deep learning
opens many interesting research directions. Many methods frame music gener-
ation as a sequence modeling problem (Oord et al., 2016; Manzelli, Thakkar,
Siahkamari, & Kulis, 2018; Dhariwal et al., n.d.; Gillick, Roberts, Engel, Eck,

3 https://youtu.be/EPKsUf5YBeM
4 https://github.com/mila-iqia/DeepDrummer
5 https://bit.ly/363cBdj
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& Bamman, 2019; Vogl & Knees, 2016; Lattner & Grachten, 2019). The gen-
eral assumption is that the right probabilistic model will capture a manifold of
desirable music to draw from.

Another popular approach to generate any kind of artistic content is that
of Generative Adversarial Networks (GAN) (Goodfellow et al., 2014). The core
idea is that a distribution can be learned by combining two neural networks, a
generator and a discriminator, in a configuration that represents the equilibrium
of a game where the two networks are trying to achieve opposite goals. This
differs from the classic approach of loss minimization. There have been a variety
of applications to the concept in the domain in music generation (Dong, Hsiao,
Yang, & Yang, 2018; Engel et al., 2019; Donahue, McAuley, & Puckette, 2018;
Kumar et al., 2019; Vogl, 2018). DeepDrummer draws some inspiration from
the concept of generator and discriminator networks of GANs, but there is no
adversarial training in DeepDrummer. Moreover, there is no reference dataset
that the generator seeks to reproduce. We use the term critic model to highlight
the fact that this is not a GAN discriminator.

DeepDrummer fits in the trend of computer music generation by integration
of deep learning in the composition process, but it does not fall in the sequence-
modeling approach. Instead, one of the novel contributions of DeepDrummer is
to have a generator-critic framework in which the computational heavy lifting is
done exclusively by the critic model. Our work shares similarities with the work
of (Jaques, Gu, Turner, & Eck, 2017) in which an agent in a reinforcement learn-
ing environment produce music using a sequential model, though their approach
rewards adherence to music theory through an external set of rules.

DeepDrummer receives feedback from users through a simple interface that
involves a binary choice of like or dislike. This kind of interaction is reminiscent
of the work of (Eric, Freitas, & Ghosh, 2008) in which the authors use Gaussian
processes in order to navigate a complex space of parameters based on minimal
user feedback. Their motivating use case involves graphics rendering in which
the meaning of the exposed parameters does not translate intuitively into the
visual output of the system. Humans are very good at judging the visual output
of such systems. It then makes sense for a system to capitalize on this ability
(this is also discussed in (Wilson, Fern, & Tadepalli, 2012)). Incidentally, this
concept from (Eric et al., 2008) has been implemented in a musical setting by
(Huang et al., 2014), in which the authors developed a platform that applies
active learning to learn higher-level intuitive synthesizer knobs by querying users
about perceived sound quality. One of the notable differences in the case of
DeepDrummer compared with the work of (Eric et al., 2008; Huang et al., 2014)
is that we are not solving an optimization problem with the goal of reaching the
global maximum but rather to suggest many good candidates.

In active learning, a system queries the user strategically, so as to gain as
much useful information as possible while minimizing the number of interac-
tions. In a context where a classifier is trained, the system will often focus on
the decision boundary where all the ambiguous data points are found. In the
case of DeepDrummer, a similar phenomenon occurs, though maximal learning
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opportunities instead arise when DeepDrummer produces erroneous drum loops
that it confidently feels that the user will like. Much like in the case of active
learning, the training set grows over time, but contains only data points that are
highly informative in order to correct misconceptions the critic has about the
user. See (Christiano et al., 2017) for a recent example of reinforcement learning
with minimal human interactions.

Finally, there is also an element of commonality between DeepDrummer and
music recommendation systems (MRS) that are based on audio similarity be-
tween songs (Bogdanov et al., 2011; Lops, De Gemmis, & Semeraro, 2011; Wang
& Wang, 2014; Zangerle & Pichl, 2018). DeepDrummer’s critic model takes au-
dio data in order to make a prediction of the user’s probability of liking it. This
allows DeepDrummer to generalize across the various sounds found in drum
loops.

3 Model and Framework

3.1 Overview

The basic pipeline for DeepDrummer is shown in Figure 1 and consists of the
following components:

– a random drum pattern generator to propose initial grid sequencer patterns;
– a library of one-shot audio samples including the kind of sounds usually

found in a drum kit;
– a function that renders grid sequencer patterns and a list of associated drum

samples (one per grid row) into an audio waveform;
– a neural network classifier critic to determine the desirability of the drum

loop audio by outputting a value in the interval [0, 1], which is a prediction
of the odds of the user liking that drum loop;

– a web interface to present the human user with drum loops and get feedback
as like/dislike ratings.

In the context of the experiments described in this paper, for simplicity, we
are always working with 16-step patterns with 4 instrument tracks (4 one-shot
samples). These form one bar, or two seconds of audio at 120bpm, which is
rendered into monophonic audio at 44.1kHz. We draw from a varied collection
of 340 one-shot samples.

3.2 Network Architecture of the Critic

A few different network architectures were considered for the critic, but the
architecture we ultimately chose is one that uses Mel-Frequency Cepstral Coef-
ficients (MFCCs) (Davis & Mermelstein, 1980) as input features. The network
uses a stack of 4 layers of 2D convolutions (with 64, 64, 64, then 8 channels),
each with leaky ReLU activation and batch normalization to downsample the
MFCC features. The dimensions of the hidden representations is reduced each
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Fig. 1: Sketch of the core components of DeepDrummer.

time by using convolution kernels of size (4, 8) and strides (2, 4). This is then
followed by one dense layer of 128 units (with leaky ReLU). A final mapping
down to two units culminates in a softmax layer that estimates the probability
that the user will like or dislike a given input. The network is relatively small
at just 291K learnable parameters. This is intentional, as small networks tend
to be easier to train with limited data. Dropout and weight decay regularization
are used to prevent overfitting.

The neural network is trained in a supervised fashion based on the feedback
given by the user. The fact that it takes an audio input, instead of symbols,
means that it can learn about what our user wants from the perspective of the
sound itself instead of just from the mapping of the instruments. This makes it
possible for the classifier to generalize between variants of kicks (or hi-hats, or
any other sounds). We did not manually sort instruments into categories, nor
give DeepDrummer any idea that certain sounds should play a specific role in
drum loops. An upside of this approach is that it can lead to creative use of the
sounds in the collection, and it is easy to add to the existing collection by simply
copying audio files to a single directory.

The critic fω(x) ∈ [0, 1] is initialized randomly for every user, where ω are
the user-specific parameters and x a drum loop. The training set is constituted
of all the previous drum loops rated by the user, and it grows every time we get
a new rating. By minimizing the cross-entropy loss of the critic during training,
a model that generalizes well would be such that its output fω(x) matches the
probability that the user would rate the drum loop x positively. That is,

fω(x) ≈ P (user rating = like | input = x) . (1)
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Fig. 2: The experiment is split into Phase I and II.

4 Experimental Protocol

4.1 Hypothesis

We want to demonstrate that, after a minimal number of interactions, Deep-
Drummer can produce loops that the user is more likely to like. The general
assumption is that as more interactions are gathered, the critic model will con-
verge towards an accurate approximation of the user’s preferences (naturally,
this is limited to their preferences within the realm of the drum loops which can
be represented by 16 steps with 4 drum one-shot samples).

Because of practical constraints in experiment design, such as limited human
attention span, we have intentionally kept the experiment short and minimalistic,
and aim to demonstrate that this is something that can be accomplished in
merely 10 minutes. With that constraint in mind, we provide a proof of concept
of the use of such a method as the core principle behind a more production-ready
tool which would naturally involve many more components.

Our goal, thus, is to measure a significant improvement in the proportion of
drum loops being liked by the users over the course of 80 ratings.

4.2 Phases I & II of the Experiment

The design of our experimental protocol needs to anticipate a potential shift in
user preferences (Kulesza, Amershi, Caruana, Fisher, & Charles, 2014; Cartwright
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& Pardo, 2016). The issue addressed here does not refer to the randomness of
the experiment, for which we can compensate by having many users and ratings.
Rather, it points to the fact that a user’s behaviour could be influenced by hav-
ing spent the last 10 minutes rating drum loops. As such, we have designed an
experiment with an active learning phase and an evaluation phase, as illustrated
in Figure 2.

In Phase I,
– the critic is learning incrementally with every rating from the current user;
– the ratings are used for training the critic and not counted in the analysis

afterwards;
– we generate 80 loops, with a probability p(x) ∝ fω(x) as in equation (1),

meaning that better loops are more common than worse loops. We using the
most recent critic model reflecting the latest ratings.

In Phase II,
– the parameters of the critic are fixed;
– the ratings are used purely for evaluation and analysis;
– we generate 60 loops, half from the initial critic and half from the final critic;
– the loops are presented to the user in a randomized order;
– we sample drum loops proportionally to fω(x) again, but we only consider

those x such that fω(x) ≥ 0.95 as a way to present the user with the very
best drum loops that we can generate.

Each drum loop generated lasts 2 seconds (one bar at 120 beats per minute)
and is repeated 4 times. We also leave one more second of audio at the end
for transients to fade. This is done to allow the users to evaluate the rhythmic
property of each drum loop. They can, however, give their ratings before the end
of the whole sequence. In Phase II, we generate new drum loops that come from
the critic models evaluated. We avoid recycling the same drum loops from Phase
I as this could lead to specific loops being recognized by the subject. The users
are given no information as to which model was used to generate the loops.

5 Results

A total of 25 people participated in this study. We want to determine whether the
critic had a better performance at the end than at the beginning, and possibly by
how much. Every user i provides 30 binary ratings for their initial critic model
and for their final critic model. We are going to analyze the average of those
ratings, such that

θ
(i)
init = ratio of drum loops that user i liked during Phase II,

from those generated using the initial critic model

θ
(i)
final = ratio of drum loops that user i liked during Phase II,

from those generated using the final critic model

∆θ(i) = θ
(i)
final − θ

(i)
init.
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By studying the distributions of those two values (θ
(i)
init, θ

(i)
final), as well as that of

their difference ∆θ(i), we can get a sense of the progress made. Larger values of θ
correspond to more drum loops being liked. In Figure 3a we show the distribution

of both θ
(i)
init and θ

(i)
final amongst all the users i. We see that the distribution of

θfinal has more of its mass around larger values than θinit. A Wilcoxon signed-

rank test confirms that the values of θ
(i)
final are statistically larger than that of

θ
(i)
init (p-value = 0.00013). This demonstrates our hypothesis.
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Fig. 3: On the left (a) we compare the proportion of audio loops that users like
for the initial critic model versus for the final critic model. On the right (b)
we report here how much improvement ∆θ(i) was achieved. For the majority
of users there were clear improvements over the course of a limited number of
interactions. A certain percentage of users clustered around 0.0, meaning that
they saw no improvement. By combing through our data, we counted 72% of
users that have a ∆θ(i) > 0, and there was 36% of users with ∆θ(i) ≥ 0.2.

6 Conclusion

In this work, we have introduced a novel way of generating music using deep
learning with a human in the loop. We presented an implementation of that idea
that we call DeepDrummer, which we have shown to very quickly achieve mean-
ingful improvements by proposing drum loops to a user and receiving feedback
in the form of like / dislike ratings.

The simplicity of the idea revolves around the use of a neural network critic
that serves as a proxy for the user in order to explore a vast landscape of music
very rapidly. Only the most relevant candidates are forwarded to the user.

We ran an experiment with 25 participants in which each user rated 80 drum
loops. We have measured empirically the improvement of ratings after those
interactions, thus confirming our claims.
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