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Abstract. Music comprises of a set of complex simultaneous events or-
ganized in time. In this paper we introduce a novel framework that we
call Deep Musical Information Dynamics, which combines two parallel
streams - a low rate latent representation stream that is assumed to cap-
ture the dynamics of a thought process contrasted with a higher rate
information dynamics derived from the musical data itself. Motivated by
rate-distortion theories of human cognition we propose a framework for
exploring possible relations between imaginary anticipations existing in
the listener’s mind and information dynamics of the musical surface it-
self. This model is demonstrated for the case of symbolic (MIDI) data, as
accounting for acoustic surface would require many more layers to cap-
ture instrument properties and performance expressive inflections. The
mathematical framework is based on variational encoding that first es-
tablishes a high rate representation of the musical observations, which
is then reduced using a bit-allocation method into a parallel low rate
data stream. The combined loss considered here includes both the infor-
mation rate in terms of time evolution for each stream, and the fidelity
of encoding measured in terms of mutual information between the high
and low rate representations. In the simulations presented in the paper
we are able to juxtapose aspects of latent/imaginary surprisal versus
surprisal of the music surface in a manner that is quantifiable and com-
putationally tractable. The set of computational tools is discussed in the
paper, suggesting that a trade off between compression and prediction
are an important factor in the analysis and design of time-based music
generative models.

1 Introduction

Music Information Dynamics is a field in music analysis that is inspired by
theories of musical anticipation (Meyer, 1956)(Huron, 2006), which deals with
quantifying the amount of information passing over time between past and future
in musical signal (Dubnov, 2006),(Abdallah & Plumbley, 2009). Music Informa-
tion Dynamics can be estimated in terms of Information Rate, which is defined
as mutual information between past and future of a musical signal. Generative
models that maximize information rate were shown to provide good results in
machine improvisation systems (Pasquier, Eigenfeldt, Bown, & Dubnov, 2017).
Since music is constantly changing, the ability to capture structure in time de-
pends on the way similarity is computed over time. The underlying motivation in
proposing a deep information model is to acknowledge the fact that imagination,
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both for the composer, improviser and the listener, is playing an important and
possibly even a crucial role in experiencing and creation of music. Music gen-
eration and listening are active processes that involve simultaneous processing
of the incoming musical information in order to extract salient features, while
at the same time predicting the evolution of those features over time, an aspect
that builds anticipations and allows creation of surprise, validation or violation
of expectation and building of tensions and resolutions in a musical narrative.

2 Deep Information Dynamics

In order to allow quantitative approach to analysis of what’s going on in the
musical mind, we propose an information theoretic model for the relation be-
tween four factors: the signal past X, the signal present Y , and their internal
or mental representation in terms of past and present latent variables Z and T ,
respectively. This highly simplified model assumes a set of Markov chain rela-
tions, as shown in Figure 1, between the past of the signal X that is encoded into
a latent representation Z, the future of the signal Y that depends on its past
X, and its approximation by a latent representation T that is predicted from
past latent representation Z. Using Markov relation Z − X − Y , we see that

Fig. 1. Graph of the model variable statistical dependencies. The letter ”e” repre-
sents an encoding that will be parametrized according to different complexity through
changing the bit-rate between the encoder and decoder in VAE.

X ”shields” the future Y from the past latent Z, meaning that once the past
musical surface X is considered, there is no additional information or statistical
dependency between the next musical surface Y and past internal state Z. Ac-
cording to this rule we can try to formulate a mathematical expression for the
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goals underlying the learning process of such a musicing system (Elliott, 1993).
Our expression for the optimization goal comprises of a trade off between sim-
plicity of representation and its prediction ability. Accordingly, we are looking
for representation that is minimizing the discrepancy, or statistical distortion,
measured by Kullback–Leibler divergence DKL, between signal prediction of Y
using complete information about the past X, versus its prediction capability
by using a simplified encoding of the past Z. Using I(X,Y ) = H(Y )−H(Y |X)
to denote mutual information, with H(·) as the entropy, the overall quality of
such error averaged over all possible encoding pairs X,Z of the musical surface
and its latent code becomes

〈DKL(p(Y |X)||p(Y |Z))〉p(X,Z) = I(X,Y |Z)

= I(X,Y )− I(Z, Y ) .

Since I(X,Y ) are independent of p(Z|X), minimizing the error between the true
conditional probability of the future on its past p(Y |X), compared to probability
of the future conditioned on the latent representation p(Y |Z), requires minimiza-
tion of −I(Z, Y ), or maximizing the mutual information between the encoding
of the past and the signal future.

Using Markov relations between the past and present latent-variables accord-
ing to diagram shown in Fig.1, we express I(Z, Y ) = I(Z, T )− I(Z, T |Y ). This
shows that the ability of predicting the future of the musical surface Y from
the latent (mental) representation of the past Z, measured by their mutual in-
formation, comprises of a difference between the information dynamics of the
latent representation, measured in terms of the mutual information involved in
imagining the next latent representation T from past latent states Z, and the
residual or redundant information between these latent states Z and T once the
actual musical surface Y is revealed or heard by the listener. In other words,
the amount of information between latent past and latent future states is being
reduced once the actual next instance of the musical surface is revealed to the
listener, and this difference between imagined music future ”in the brain” versus
actually the surprise in hearing the next musical event amount to the quality
factor in equation ?? that represents the the ability of the system to predict the
next musical surface from its past internal state.

If we assume that the latent representation fully captures the surface, or in
other words, if T = Y , then full knowledge about the musical surface is already
contained in the imaginary latent states sequence, resulting in zero residual infor-
mation I(Z, T |Y ) = 0. In such case we may ignore the right side of the equation,
which creates an exceptional situation where there is no need to actually listen
to the music and the best experience is achieved simply by imaginary predic-
tion. In case when the mental representation is not perfect, a non-zero surprisal
factor I(Z, T |Y ) = I(Z, T ) − I(Z, Y ) allows for musical tension to emerge dur-
ing listening, or be deliberately inserted by the creator during composition or
improvisation.
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2.1 Surface Representation and Information Dynamics

In our information theoretical approach one needs to know the probability distri-
bution of the relevant variables in order to compute the appropriate information
measures. Since we do not know the true probability dynamics of the musical
surface p(X,Y ), we will substitute it by a variational approximation by encod-
ing it into latent codes Z and T using a Variational Auto-Encoder (VAE). It
was shown that minimization of I(X,Z) under distortion constraint D(X,Z)
is equivalent to learning a VAE representation through minimizing of Evidence
Lower Bound (ELBO)(Alemi et al., 2017). Combining ELBO and the predic-
tion objective, gives us a combination of latent encoding quality and temporal
information

L = I(X,Z) + β〈D(X,Z)〉 − γ(I(Z, T )− I(Z, T |Y )) . (1)

It should be noted that in the above expression there are separate variables
referring to past X and Z, and future T, Y . In the following we will first train
a neural network using past data so as to minimize the X,Z part of the loss,
and then manipulate Z, T by bit-rate limited encoding. In the following we will
assume that X = Zfull−rate and Y = Tfull−rate, and compare it to lower bit-rate
encoding.

2.2 Bit-rate limited Encoding

Using a noisy channel between encoder and decoder we are able to control the
complexity of the encoding using bit-allocation. The rate-distortion theory quan-
tifies the trade off between the amount of information between two variables,
measured by their mutual information, and the distortion or error between them.
This theory is a basis for lossy compression, where less bits need to be trans-
mitted for lower quality signals. According to this theory, for a simple Gaussian
information source of variance σ2, the rate R and given distortion level D is
given by

R(D) =

{
1
2 log2

σ2

D , if 0 ≤ D ≤ σ2

0, if D > σ2.
(2)

One can see that for distortions above variance level, no bits need to be transmit-
ted. The bit-allocation algorithm uses the above equation to allocate different
amount of bits to multiple variables, which in our case are the latent variables
of the VAE encoder. Starting from the highest variance, or strongest variable,
it iteratively allocates bits in optimal manner, until the bit pool is exhausted.
Then lower resolution variables are then used to generate new outputs through a
decoder. Schematic representation of the channel is given by Figure 2. Encoding
for a lower bit-rate is given by the following optimal channel (Berger, 1971)

Q(zd|ze) = Normal(µd, σ
2
d) (3)

µd = ze + 2−2R(µe − ze) (4)

σ2
d = 2−4R(22R − 1)σ2

e (5)
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Fig. 2. Noisy channel between encoder and decoder

For each latent variable, the equation tells us the mean and variance of the
decoder’s conditional probability. One can see that a channels with zero rate will
transmit deterministic mean value of that element, while channels with infinite
rate will transmit the input values with zero added noise.

2.3 Estimation of Information Dynamics using VMO

The computation of Information Dynamics is done in terms of Information Rate,
IR=I(X,Y ), which is a measure of mutual information between past and present
in a time series. This requires a predictive model that can capture the joint
information between past and present by learning from examples. Deep models
such as RNN can be used to model time sequences, and predictive information
measures can be implemented using estimators of mutual information between
the last hidden variable in RNN that summarizes the whole sequence, and the
predicted variable. One of the difficulties in using RNN is the limited history or
poor modeling of long sequences.

Variable Markov Oracle (VMO) is a method based on the Factor Oracle (FO)
string matching algorithm that initially quantizes a signal xT1 = x1, x2, . . . , xT ,
into a symbolic sequence sT1 = s1, s2, . . . , sT , over a finite alphabet s ∈ S,
with X = xpast = xT−1

1 and Y = xpresent = xT . IR is estimated by apply-
ing a string compression method C and using an approximation I(X,Y ) =
H(Y )−H(Y |X) ≈ C(Y )−C(Y |X), where we substitute entropy H with com-
pression C, with C(Y ) = log2(|S|) being the number of bits required for individ-
ual symbol encoding over alphabet S, and C(Y |X) being a block-wise encoding
that recursively points to repeated sub-sequences, such as in the Lempel-Ziv or
Compror string compression algorithms (Wang & Dubnov, 2015). In the follow-
ing we apply VMO to estimate the information dynamics of the latent represen-
tation I(Z, T ) at different bit-rates.
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2.4 Estimation of the Predictive Encoding Quality

In the VAE training step we minimized I(X,Z) (and I(Y, T ) as well) that gives
an optimal instantaneous representation. Assuming Y = Tfull−rate, and Z =
Zlimited−rate, we use MINE (Mutual Information Neural Estimation) (Belghazi,
Rajeswar, Baratin, Hjelm, & Courville, 2018) as a method for estimating I(Z, Y ).
The network used in the experiments comprises of two parallel networks with
shared weights, one receiving ordered pairs of Z, Y and the other receiving a pair
of Z with a shuffled version of Y , both mapped though two fully connected layers
with 30 hidden states with a dropout layer of 0.3 and eventually mapped to a
single output. The training was done until approximate convergence, as shown
in the results section.

Fig. 3. Estimation of the predictive quality of bit-limited representation. Sub-figures
A,B,C show the bit-rate allocation at rates 10, 50, and 10000, respectively. The x-axis
corresponds to the 500 latent state variables, with portions showing no-bit allocation
basically not being transmitted or accounted for in the latent representation. Sub-
figures D,E,F show the MINE estimate as function of the training epochs, for these
rates.

3 Experimental Results

In order to demonstrate the utility of the proposed model for music analysis, we
show the results of deep information rate analysis of a single musical piece. The
concept of surprisal I(Z, T |Y ) = I(Z, T )− I(Z, Y ) was defined as the difference
between the ability to imagine the next latent state and the ability to predict the
next musical surface. From pure mathematical perspective both factors require
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averaging over the complete data. In practice, VMO provides instantaneous mea-
sure of information rate since we have access to compression rate at every time
step of the time series. The MINE method averages over all data pairs Z, Y , out-
putting a single number. In future work we plan to train a predictor in order to
compute an instantaneous signal (surface) prediction error, so that both factors
of surprisal could be considered in time.

The experiments reported below were conducted on a MIDI file of the Prelude
and Fugue No. 2 in C Minor, BWV 847, by J.S.Bach. The full rate representation
was obtained by training a VAE encoder on set of MIDI files from LABROSA1.
The VAE that was used for the encoding had a single fully connected hidden layer
of size 500, trained with ELBO loss function with Cross-Entropy reconstruction
and KL reparameterisation loss using an Adam optimizer, which are the standard
settings for VAE. Figure 3 shows the predictive quality, measured as mutual
information I(Z, Y ) between a bit-reduced latent representation Z and the music
signal Y one bar into the future (we remind that Y is represented by Tfull−rate
of the VAE encoder). The bit-allocation regime for 500 latent states is shown
at the top row. The x-axis of the top row are indices of the latent vectors, and
the y-axis is the number of bits. The bottom row shows the MINE optimization
process that converges to an estimate of the mutual information I(Z, Y ) when it
reaches the plateau after about 100 epochs. The results show that for rate 10 the
amount of predictive information is around 3 bit, at rate 50 around 5 bits and at
full (10000 bit) rate, it is between 8 and 9 bits. Such result can be expected since
more complex (higher bit-rate) latent representation Z carries more information
about the future of the signal Y .

Figure 4 shows the information dynamics IR=I(Z, T ) of the latent represen-
tations itself at different representation complexity levels. This analysis is meant
to capture the imaginary expectation of music based on the dynamics of the
latent representation alone. A bit-allocation algorithm was used to reduce the
representation complexity of the VAE encoding to the desired bit-rate. For mu-
sical reference we provide plots of harmonic and thematic analysis of the piece2

in sub-figure B, and score rendering in sub-figure C.

4 Discussion and Summary

In this paper we presented a work in progress for developing a framework for
modeling of musical surprisal, formulated in terms of information theoretical re-
lations between full-rate (high-fidelity) encoding of the musical data, and a lower
complexity latent encoding that models mental or imaginary musical representa-
tions. This formalizes the notion of musical anticipation that were proposed by
various researchers in terms of information dynamics and representation learn-
ing, taking into account the limited capacity of cognitive processing and the
trade off in fidelity of its representation of sensory input. It is evident from the
experiments that lowering the bit-rate of the encoding has a dramatic effect on

1 https://labrosa.ee.columbia.edu/projects/piano/
2 http://bachwelltemperedclavier.org/pf-c-minor.html
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Fig. 4. Analysis of Information Rate using VMO at A:full-rate, D: rate 50, E: rate
10. Sub-figure B shows harmonic analysis of the Prelude and Thematic analysis of the
Fugue, Sub-figure C shows the musical score.

the information dynamics of the latent representation. Considering information
dynamics of latent states as expectations formed by our imagination, the points
where the expectations differ at different bit-rates are assumed to carry creative
or experiential significance. In the experimental results one can see that tran-
sition to new materials in bars 25-27 causes a drop in Information Rate. Also
the development of thematic material in the Figure starting around bars 44-45
increases IR in both full and 50 rate3. For rate of 10 we see that except for a
short initial period where all materials are still new (low IR), the rest of the
music is perceived as one long repetition (high IR). It should be noted that
these results may be also due to the nature of the piece itself and the quality of
the encodes. Additional analysis on multiple pieces and different encoding and
predictive architectures are anticipated in the future.

The motivation for this type of modeling comes from the cognitive idea that
musical creativity and musical perception obey a trade-off between abstraction or
simplified representation of music that captures more salient or structural aspects
of music, and perceptual sensibility to the musical surface that is abundant
in detail. To the best of our knowledge, no such conceptual or computational
framework had been previously offered.

3 The units of bit-rate reduction are total bits per measure
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