
Style Composition With An Evolutionary
Algorithm

Zeng Ren

New York University
zr372@nyu.edu

Abstract. This paper presents a general-purpose symbolic music gener-
ation framework based on an evolutionary algorithm. It aims to work for
any given musical fitness that is definable in a similar way as the ruleset
for 18th century counterpoint. This framework is demonstrated through
several composition scenarios in the style of 18th century four-part first
species counterpoint. The scenarios include free and constrained compo-
sition tasks such as voice/part completion and melody harmonization.

1 Introduction

With the advancement in predictive models, style imitation tasks have gained
much interest in recent years in the field of algorithmic composition. In contrast,
tasks involving solving arbitrary music composition objectives have not received
as much attention.

Pearce, Meredith, and Wiggins (2002) identify four main motivations for
developing computer programs which compose music:

1. Expansion of compositional repertoire
2. Development of tools for composers
3. Proposal and evaluation of theories of musical styles
4. Proposal and evaluation of cognitive theories of musical composition

Under this framework, the first group includes corpus based style imitation
models with various predictive architectures, from markov chains (Farbood &
Schöner, 2001; Pachet & Roy, 2011) to artificial neural networks (Liang, 2016;
Yang, Chou, & Yang, 2017; Huang, Hawthorne, et al., 2019; Huang, Vaswani,
et al., 2019). The second group includes models that give us better control over
the music (Hadjeres, Pachet, & Nielsen, 2016; Engel et al., 2017; Dhariwal et al.,
2020).

In this paper, the motivation of the proposed composition model is to gener-
ate music according to definable musical objectives. This model can be used both
as a composition tool and a simulation tool to verify theories of musical styles.
Music composition is thus modeled as an optimization problem with musical
objectives expressed as a real valued function in [0, 1]. The model’s architecture
is based on evolutionary algorithms (Beyer & Schwefel, 2002), a family of meta-
heuristics that has worked well on simple melody search. The user inputs a fitness

2 Zeng Ren

function together with a music template that represents positional constraints
such as fixing the top voice as given, or having a two beats pick-up measure
at the beginning. The algorithm will then output a list of candidate solutions
that try to optimize the provided fitness function within the constraints of the
provided music template.

2 Related Work

In most western polyphonic music, we see the idea of simultaneously working
with multiple constraints in different levels. Species counterpoint is the most fun-
damental representation of this idea where the constraints require composers to
think locally and globally, horizontally and vertically, harmonically and rhythmi-
cally. From a computational point of view, this is a hard combinatorial problem
with vast search space and discontinuous fitness landscape. Thus, metaheuris-
tics, in particular genetic algorithms, are commonly employed for such task.
Solving counterpoint-related tasks including full counterpoint composition, har-
monization, and figured bass, is the primary focus for many previous works using
genetic algorithms. Since I am designing a framework that is supposed to work
for arbitrary fitness function, here I will focus on approaches that are not corpus
based.

McIntyre (1994) uses a genetic algorithm (GA) to generate short four-part
baroque harmonies. When combining several small fitness functions into a large
one, McIntyre adopts a three-tiered design to reflect their varying level of musical
importance. Phon-Amnuaisuk et al. (2000) experiment with a GA for harmo-
nization and point out the inherent difficulties, primarily the non-local nature of
the fitness function and the lack of structured reasoning. They suggest that fu-
ture works could consider more knowledge-rich mutations, especially those could
“leap directly across the barriers in the fitness landscape.” Donnelly and Shep-
pard (2011) design an GA to compose four-part harmony by expansion starting
from a single chord. In dealing with a large pool of mutations, they make the
probability distributions of mutations change dynamically by encoding them as
part of the chromosome. Herremans and Sörensen (2013) use a variable neigh-
borhood search algorithm to optimize two-part fifth species counterpoints. The
fitness function is a weighted sum of horizontal and vertical evaluations. The
algorithm uses three types of moves that are equivalent to the swap and point
mutation in classic genetic algorithms.

Looking at the previous works, I conclude that the main difficulties in using
genetic algorithms to optimize a given music fitness function include:

1. It is hard to combine sub-evaluations into a fitness function without intro-
ducing unwanted tradeoffs.

2. The fitness landscapes are often filled with local extremes or even disconti-
nuities, making it hard to optimize using neighbor search techniques.

3. Simple genetic operators cannot efficiently explore a complex fitness land-
scape so we need operators that can “leap” over local extremes.

Style Composition With An Evolutionary Algorithm 3

4. It is hard to design variation operators that can work across different musical
fitness functions.

5. Increasing the set of mutations can partially address the first three problems
but will increase the number of searches required to properly explore the
space. Therefore, we need to know how to choose them in an efficient and
effective way.

The main differences between the framework in this this paper and the pre-
vious ones are:

1. It employs a hierarchical music representation using n-dimensional arrays
unlike the one dimensional chromosome in classic GAs. This, together with
the music template, enables an expressive representation of music and mu-
sical tasks.

2. It uses a smooth tiered functional form for the fitness function to combine
sub-evaluations. This gives us better control over the objective. First, we
can describe a more complex preferential logic among the fitness components
comparing to the weighted sum design. Second, the activation of each tier
has a controllable smooth transition as opposed to the binary jump, enabling
the algorithm to gradually prioritize higher tier constraints as the lower tiers’
evaluations rise.

3. It uses very few hierarchical variation operators (mutation and crossovers).

4. To guide the probability distribution of the operators, it uses a semi-autonomous
Attention mechanism that allows human guidance in real-time.

3 Music Encoding

This paper focuses on the symbolic representation of music similar to the conven-
tional staff representation. However, performance related elements such as ex-
pressions, dynamic, and articulations will not be considered at the current stage.
The proposed representation will preserve hierarchical rhythmic structures
like voices, measures, beats, and beat divisions. It would also include rests, and
tied notes. Each piece of music is represented by a 4-dimensional numpy.array
of shape

(#voices, #measures, #beats, #beat divisions).

The array is filled with “general note” objects which unify pitches, rests, or tied
notes, all encoded in strings. Pitches are represented by MIDI note numbers but
shifted so that the middle C (C4) is ‘0’. Rests are represented by ‘.’ and tied note
is represented by ‘*’. The note duration can be unambiguously inferred from the
representation. The hierarchical structures are naturally encoded by the array
shapes. An example (see Appendix A) of such encoding is shown in Figure 1.
The corresponding music is shown in Figure 2.

4 Zeng Ren

4 Problem Formulation

Composing in this context can be framed as an optimization problem

max
x∈S

f(x) (1)

where the search space S is the set of music that fits the provided music template,
and the objective function f : S → [0, 1] is crafted based on one’s composition
goals. When handcrafting a fitness/evaluation function f for musical result, we
often want to express it in terms of a function of smaller and easier-to-define
sub-evaluations. In other words, it is helpful to formulate f as a composition of
two parts: S → [0, 1]n → [0, 1]. The first part is a collection of small functions
grouped into a vector-valued function f : S → [0, 1]n which evaluates specific
aspects of the music such as voice leading quality, contour, and voice range. For
the second part, many of the previous works employ a linear combination to
combine smaller fitness functions to a big one:

f = cT f , c ∈ [0, 1]n (2)

This strategy may not be able to accurately reflect the intended objective since
it may lead to unwanted trade-offs among sub-evaluations. In practice, musical
objectives can be dependent among each other; we might only want to consider
evaluation z only when evaluation x and y are satisfied to a certain threshold.
Based on this need, I advocate for a smooth tiered fitness design.

5 Smooth Tiered Fitness Function

The smooth tiered fitness function (3) contains a list of activations a ∈ [0, 1]n of
the sub-evaluations f together with its activation thresholds s ∈ [0, 1]n.

f = cT diag(a)f (3)

A tier is activated if and only if the previous tiers have met their thresholds.
Formally put, ai = 1 ⇐⇒ fj ≥ sj ,∀j < i. The activations a = {ai}ni=1 are
designed as (4):

ai =

{
1, i = 1

ai−1σ((f − s)ei−1), 1 < i ≤ n
(4)

where σ is the unit step function. To make f smoother, which is useful for
optimization, we can substitue σ by a family of smooth functions σw that can
approximate the unit step function 1[0,∞]. The construction of the family σw
can be found in Appendix B.

The sub-evaluation function of each tier can also adopt this multi-tier design,
enabling a modular and hierarchical design of fitness function. We can now build
a big and complex evaluation from the small ones.

Style Composition With An Evolutionary Algorithm 5

6 Genetic Operators

This algorithm uses two mutation operators and one crossover operator. They
are similar to the operators in tree encoding of genetic programming. Mutation
and crossover happen not just on the note level, but also on the level of beat,
measure, voice, or the whole piece. This reduces the necessary steps required to
transform one piece to another via these operations.

A n-dimensional array can be visualized as a hierarchical tree and any sub-
tree within it will be referred to as a hierarchical unit.

Hierarchical Exchange: Exchange one hierarchical unit between two pieces, thus
generalizing the classic single-point crossover for one dimensional chromosome.

Hierarchical Pitch Shift: Uniformly move the pitch of the selected hierarchical
unit based on the given distance in semitones, generalizing the classic point
mutation.

Hierarchical Neighbor Swap: Switch a pair of “neighboring” hierarchical unit
[x1, ..., xk] in a piece. The “neighbor” is with respect to the swapping level l, 1 ≤
l < k ≤ 4. The mutated array is defined as:

NewArray ←− Array (5)

NewArray[x1, ..., xl ± 1, ..., xk]←− Array[x1, ..., xl, ..., xk] (6)

NewArray[x1, ..., xl, ..., xk]←− Array[x1, ..., xl ± 1, ..., xk] (7)

Figure. 3 (see Appendix. C) shows three examples of the Hierachical Neighbor
Swap with respect the same unit but with different swapping levels (indicated
by red arrows) l = 3, 2, 1 respectively.

7 Evolution specification and Implementation

There are two kinds of population involved in this evolution: Piece and Attention.
Attention population guides the variation of Piece population by controlling
the parameters for the applied mutations and crossovers. In other words, the
Attention can be considered as a evolving “hyper-parameter” of the model. The
fitness of an attention individual is measured by how likely it improves the Piece
population.

Other than that there are two populations, the rest of the algorithm is similar
to a (µ/ρ+λ) evolution strategy (ES). The specific parameters are listed in Fig.
5a and Fig. 5b (see Appendix. C).

The implementation of the algorithm is partially based on Deap: A Python
Framework for Evolutionary Algorithms. (Fortin, De Rainville, Gardner, Parizeau,
& Gagné, 2012). Data representation and computation is done by Numpy (Van
Der Walt, Colbert, & Varoquaux, 2011). The visualization of music scores is done
using Music21. The data representation is done by Matplotlib (Hunter, 2007).

6 Zeng Ren

8 Demonstration and Evaluation

The following scenarios involve various tasks related to the 18th century four-part
first species counterpoint. The scenarios test the model’s ability on mediating
global melodic contour and local intervallic constraints. A tiered fitness func-
tion is crafted based on the idiomatic theory in Counterpoint in Composition:
The Study of Voice Leading (Salzer & Schachter, 1989). In these composition
scenarios, the music outputs are evaluated by a range of sub-evaluations includ-
ing global melody contours, horizontal and vertical intervals, voice-leadings, and
cadences. More details about the specific sub-evaluations and their implementa-
tions can be found in Appendix F. The scale, which can be arbitrarily specified,
is chosen to be C major for the demonstrations in this paper.

This algorithm comes with an interactive interface (Fig. 6, Appendix. C)
where the user can see the real-time best piece of the population and guide the
attention accordingly.

8.1 Scenario 1: Free Four-Part First Species Counterpoint

In this experiment, the piece is configured to be (encoded in the musical tem-
plate) note-against-note with a 5̂ − 1̂ bass cadential movement. The generated
result is shown in Fig. 7 (see Appendix. D).

Analysis The contour of the top is good at the first two measures but there is
a leap of M9 in the third measure from G to F. The fitness function does not
set the maximum size of leap, which is an octave, so it could be fixed by adding
such constraint. The same goes for the jump at bass in measure two beat two.
The tenor voice has a unnecessary jump at the second beat of the first measure.
It could have held the previous note over. The reason this jump occurs is that it
contributes to the ”climax arrangement fitness”; it makes the G a climax of the
tenor voice, thus spreading out the high points in all voices. This jump could
be discouraged by increasing the activation threshold for the last tier ”climax
arrangement” sub-evaluation.

For voice-leading, there is a hidden fifth between the outer voices such as
the start of measure three, and also some involving the inner voices. Those
deficiencies are reflected in the fitness report (see Appendix. E). The G at the
first beat of the third bar could be changed to E but that gives rise to a M7,
indicating that this is a local maximum of the fitness landscape and the model
would benefit from improvement on the optimization algorithm.

8.2 Scenario 2: Constrained Composition based on an given piece

In this set of experiments, the algorithm is given an existing piece segment
(reduction of BWV 307, see Fig. 4) and it completes the piece with various sets
of constraints. Scenario 2-1 (Fig. 8) is a harmonization task, asking to complete
the piece given the top voice. Scenario 2-2 (Fig. 9) is a voicing task where the
bass and top voices are given. Scenario 2-3 (Fig. 10) is when bass and chords
(without voicing) are given.

Style Composition With An Evolutionary Algorithm 7

Analysis 2-1 One of the most obvious problems in this piece is the minor 9th
chord at the end of the fourth measure. As a response we could try to increase
the weight of the outer voices dissonance evaluation. An interesting observation
is that the model used a lot of first inversion chords in this piece. This could
be a combined result of the design of the “Interval Dissonance,” where interval
related to bass note are given more weight and “Interval Variety,” where the
presence of sixths and thirds are given more weights than the presence of fifth
in a chord’s interval composition. Those two evaluations accidentally make first
inversion chords more favorable, since first inversion chords most likely result in
bass related intervals to be sixths and thirds. To address this issue, we should
have some adjustments to these two sub-evaluations. Another point is that the
first chord has very unbalanced spacing. Future fitness function will add a sub-
evaluation specifically for controlling spacing.

Analysis 2-2 One issue is the unresolved 4̂ of the V7 chord at the cadence. Res-
olution of harmonic tension is currently not implemented in the fitness function
since they don’t very often appear in the first species. In future work, especially
as the music complexity increases, we will add a collection of sub-evaluations to
control harmonic tension.

Analysis 2-3 The cadence in the middle is not correctly resolved (unresolved
leading tone). This is because the fitness function assumes that there is only one
cadence at the end. To address this problem, we need the Music Template to
include meta-data such as the location of cadence and let the fitness function to
be able to respond to that. Another problem is that the soprano voice is jumpy
in the second half of the piece. This could be fixed by adjusting the melody
evaluation such that more weight is assigned to the “Prefer step motion” sub-
evaluation.

8.3 Scenario 3: Hard Harmonization

The algorithm is given a hard melody to harmonize (Fig. 11), with non-chord
tones that require secondary chords to harmonize. The piece is now twice as
long as the previous one in Experiment 2, which squares the size of the search
space. This melody is suggested in (de Vega, 2017) as a hard testing melody for
harmonization algorithms.

Analysis The piece doesn’t start on the I chord. As the number of notes increase,
the melody sub-evaluation that controls the start of the melody becomes weaker
and results in a non-tonic start. New evaluations should be added to control the
harmonic anchor points (specific locations for specific chords). This could also
allow us to specify the presence of cadence in the middle, where the piece used
a iii chord. The model has a hard time dealing with non-diatonic tones. For the
Bb in the soprano, it comes up with a G and for the F# it came up with note
A and F. It could be a program implementation problem resulting in the fitness
to only check diatonic intervals instead of absolute interval. Further tests are
needed to verify the cause of the issue.

8 Zeng Ren

9 Conclusion

This algorithmic composition framework is able to optimize the fitness function
to a satisfactory level, except for the hard harmonization problem. One notice-
able shortcoming about the musical output is that the chord progressions seem
to lack a sense of direction. This is because the current fitness function design
has not considered this factor. To further improve the generated result, we need
to add more sub-evaluations to the fitness function and perform a systematic
optimization of the model’s parameters.

The general aim for future work is to do more complex musical tasks such
as fugues and invertible counterpoints. Two lines of research will continue si-
multaneously and support each other. First we need to expand the collection of
sub-evaluations for future fitness function crafting. This collection will be imple-
mented in a modular way and will be open sourced. Second, we need to improve
the current genetic algorithm. This means more systematic studies of the effects
of the hierarchical operators and attention mechanism. In particular, we want to
identify the small music situations that cause the bottle neck in the optimization
process and then try different different hierarchical operators on them to test
their ability to overcome the local maximums of the fitness landscape.

The effects of the Attention mechanism also need further investigation. My
current experiments speculate that it improves the beginning stage of the opti-
mization fitness but causes earlier plateau. But it is too soon to conclude at this
stage whether it leads to premature convergence.

More complex musical tasks may require the algorithm to perform a series
of mutations as opposed to one to overcome the local extremes. This usually re-
quires some level of previously acquired experience. Using reinforcement learning
to direct “Attention” to achieve high fitness could be a viable way to enable the
model to acquire the experience of optimizing similar fitness functions.

Acknowledgement

I want to thank Panayotis Mavromatis and Brian McFee for their valuable sug-
gestions on this research project. I also want to thank the three anonymous
reviewers for their time spent to provide feedback on this paper.

References

Beyer, H.-G., & Schwefel, H.-P. (2002, 03). Evolution strategies - a com-
prehensive introduction. Natural Computing , 1 , 3-52. doi: 10.1023/A:
1015059928466

de Vega, F. F. (2017). Revisiting the 4-part harmonization problem with gas:
A critical review and proposals for improving. In 2017 ieee congress on
evolutionary computation (cec) (p. 1271-1278).

Dhariwal, P., Jun, H., Payne, C., Kim, J. W., Radford, A., & Sutskever, I. (2020).
Jukebox: A generative model for music.

References 9

Donnelly, P. J., & Sheppard, J. W. (2011). Evolving four-part harmony using
genetic algorithms. In Evoapplications.

Engel, J., Resnick, C., Roberts, A., Dieleman, S., Eck, D., Simonyan, K., &
Norouzi, M. (2017). Neural audio synthesis of musical notes with wavenet
autoencoders.

Farbood, M., & Schöner, B. (2001). Analysis and synthesis of palestrina-style
counterpoint using markov chains. In Icmc.

Fortin, F.-A., De Rainville, F.-M., Gardner, M.-A., Parizeau, M., & Gagné, C.
(2012, jul). DEAP: Evolutionary algorithms made easy. Journal of Ma-
chine Learning Research, 13 , 2171–2175.

Hadjeres, G., Pachet, F., & Nielsen, F. (2016). Deepbach: a steerable model for
bach chorales generation. In Icml.

Herremans, D., & Sörensen, K. (2013, 11/2013). Composing fifth species counter-
point music with a variable neighborhood search algorithm. Expert Systems
with Applications, 40 . Retrieved from http://www.sciencedirect.com/

science/article/pii/S0957417413003692 doi: 10.1016/j.eswa.2013.05
.071

Huang, C.-Z. A., Hawthorne, C., Roberts, A., Dinculescu, M., Wexler, J., Hong,
L. L., & Howcroft, J. (2019). Approachable music composition with ma-
chine learning at scale. In Ismir.

Huang, C.-Z. A., Vaswani, A., Uszkoreit, J., Simon, I., Hawthorne, C., Shazeer,
N., . . . Eck, D. (2019). Music transformer: Generating music with long-
term structure. In Iclr.

Hunter, J. D. (2007). Matplotlib: A 2d graphics environment. Computing in
Science & Engineering , 9 (3), 90–95. doi: 10.1109/MCSE.2007.55

Liang, F. (2016). Bachbot: Automatic composition in the style of bach chorales.
University of Cambridge, 8 , 19–48.

McIntyre, R. A. (1994). Bach in a box: the evolution of four part baroque
harmony using the genetic algorithm. In Proceedings of the first ieee con-
ference on evolutionary computation. ieee world congress on computational
intelligence (p. 852-857 vol.2).

Pachet, F., & Roy, P. (2011). Markov constraints: steerable generation of markov
sequences. Constraints, 16 (2), 148–172.

Pearce, M., Meredith, D., & Wiggins, G. (2002). Motivations and methodologies
for automation of the compositional process. Musicae Scientiae, 6 (2), 119–
147.

Phon-Amnuaisuk, S., Tuson, A., & Wiggins, G. (2000, 06). Evolving musical
harmonisation.
doi: 10.1007/978-3-7091-6384-9 39

Salzer, F., & Schachter, C. (1989). Counterpoint in composition: The study
of voice leading. Columbia University Press. Retrieved from https://

books.google.com/books?id=7IP0Jo9Dr9QC

Van Der Walt, S., Colbert, S. C., & Varoquaux, G. (2011). The numpy array:
a structure for efficient numerical computation. Computing in Science &
Engineering , 13 (2), 22.

10 Zeng Ren

Yang, L.-C., Chou, S.-Y., & Yang, Y.-H. (2017). Midinet: A convolutional gen-
erative adversarial network for symbolic-domain music generation. ArXiv ,
abs/1703.10847 .

A Music Encoding

Fig. 1: A randomized array of shape (4,3,2,2).

Fig. 2: The music corresponding to the randomized array

B Contruction of σw

Let

h(x) =

{
0, x ≤ 0

e−
1
x , x > 0

, (8)

and

gw(x) =
h(x)

h(x) + wh(1− x)
, (9)

σw(x) := gw(x+ 1), (10)

then
σw

pt.wise−−−−−→
w→∞

1[0,∞]. (11)

Appendix 11

C Figures for Illustration

Fig. 3: Visualizing Hierarchical Neighbor Swap as subtree exchange. Here we
choose the piece shape to be (2,2,2,2) for demonstration. The changing unit can
be any subtree, here only two-level subtrees are demonstrated

Fig. 4: The reduction of BWV 307 to first species and transposed to C major

12 Zeng Ren

Fig. 5: Table of parameters

(a) Evolution Strategy Parameters

Piece Population
ES type (µ/ρ+ λ)
µp population size 150
ρp mating size 135
λp off-spring size 150
Mutation rate 0.3
Crossover rate 0.3
reproduction rate 0.4
Hierarchy probabilities

Attention Population
ES type (µ/ρ+ λ)
µa population size ∝ piece shape
ρa mating size 0.1 µa

λa off-spring size ∝ piece shape
Mutation rate 0.3
Crossover rate 0.1
Reproduction rate 0.6

(b) Scenario Configurations

Scenario 1: Free Composition
Piece Shape (4,8,2,2)
Generation 150
Runtime 5 min

Scenario 2: Music Completion
Piece Source First Phrase of

BWV 307
Piece Shape (4,5,4,2)
Generation 300
Runtime 15 min

Scenario 3: Hard Harmonization
Melody Source Exercise from a

Spanish Music
Conservatory

Piece Shape (4,8,4,2)
Generation 1000
Runtime 1h

Fig. 6: The real-time optimizing interface. User can direct the attention by click-
ing on the attention plot on the top right. The current best individual of the
population is displayed on the top left. The evaluation report of the best individ-
ual is displayed at the bottom left. The bottom right shows the 4-d distribution
of the attention population.

Appendix 13

D Generated Results

Fig. 7: Scenario 1 Four-Part Free

Fig. 8: Scenario 2-1: Given Soprano

Fig. 9: Scenario 2-2: Given Bass and Soprano

Fig. 10: Scenario 2-3: Given bass

Fig. 11: Scenario 3: hard harmonization

14 Zeng Ren

E Evaluation Reports

Fig. 12: Scenario 1 Report

Fig. 13: Scenario 2-1 Report

Fig. 14: Scenario 2-2 Report

Fig. 15: Scenario 2-3 Report

Fig. 16: Scenario 3 Report

Appendix 15

F Fitness components implementation

Table 1: Melody Fitness f

Sub-evaluations Description Fitness

Tier 1: Hard Rules

Interval Dissonance Avoid tritone and sevenths. f1,1
Leap f1,2

Number limit occurrence ∈ [2, L/10 + 2]. f1,2,1
Big leap limit occurrence ∈ [0, 2]. f1,2,2
Separation of leaps Prefer leaps in outer voices spread apart. f1,2,3

Sequence Avoid long sequence (5) of same motion. f1,3
Range f1,4

Pitch span size P5 ≤ size < P12. f1,4,1
Melody range Notes belong to voice range. f1,4,2

Start and end f1,5
Target notes Start and end on I (outer voices on 1̂). f1,5,1
Cadence motion (Soprano only) ends by step. f1,5,2

Tier 2: Local Shape

Leading Tone Penultimate leading tone resolve up to 1̂. f2,1
Motion Damping Prefer decaying size of consecutive leaps. f2,2
Avoid Halting Outer voices avoid repeating same note. f2,3
Tier 3: Global Shape

Unique Extremes The highest/lowest notes should be unique. f3,1
Avoid centering Examined using window of fixed length (5). f3,2
Prefer step motion Up to 3/4 of all motions. f3,3
Direction change occerance ≤ L/4 f3,4

Table 2: Four-part Counterpoint Fitness F

Sub-evaluations Description Fitness

Tier 1: Hard Rules

Range Each voice in their respected range. F1,1

Voice crossing Avoid voice crossing but small amount of
unison is fine

F1,2

Tier 2: Basic skeleton

Outer voices Evaluation of individual outer voices. F2,1 = f
Voice Leading Avoid parallel/hidden fifths and octaves. F2,2

Interval Dissonance discourage dissonant in chords’ interval vec-
tor.

F2,3

Interval Variety Encourage a balanced distribution among
perfect/imperfect consonances in chords’
interval vectors.

F2,4

Cadential Movement End with a correctly constructed perfect
authentic cadence.

F2,5

Tier 3: Inner Voices

Inner Voices evaluation Evaluation of individual inner voices. F3,1 = f

Tier 4: Global Shape

Climax Arrangement The climaxes of the voices should be spaced
out and not overlap

F4,1

16 Zeng Ren

Notations and definitions

nobject: number of an object in the melody (12)

bump[a,b](x) =

1− a−x

a if x < a

1 if x ∈ [a, b]
1

1+0.1(x−b) if x > b

(13)

dist(x,A) = mina∈A|x− a| (14)

Dist(A,B) = mina∈A,b∈B |a− b| (15)

S(x) =
1

1 + e−x
(16)

Sub-evaluations

f1,1(melody) = ratio of motions with eligible intervals (17)

f1,2,1(melody) = bump[2,4](#leaps) (18)

f1,2,2(melody) = bump[0,2](#bigleaps) (19)

f1,2,3(melody) = min(1,
1

4
smallest gap size between leaps) (20)

f1,3(melody) = whether exists long sequence (> 4) of repeating motion (21)

f1,4,1(melody) = bump[5,19](highestnote− lowestnote) (22)

f1,4,2(melody) = 1− tanh(Avg
notes

dist(note, range)) (23)

f1,5,1(melody) = (1− Avg
x∈melody[0,−1]

tanh ◦ dist(x, I chord)) (24)

f1,5,2(melody) = bump[1,2](ending interval) (25)

f2,1(melody) = whether the penultimate leading tone (if exists) resolves up by step
(26)

f2,2(melody) = Avg
leaps

bump[0,0.4](|
sizeinterval after leap

sizeleap
|) (27)

f2,3(melody) =
#halting

L
(28)

f3,1(melody) =
2

#highestnote+ #lowestnote
(29)

f3,2(melody) = min{g(segment) : segment ∈ length 4 segments in melody}
(30)

where g(segment) = 1− nmostoccurednote

#notes
(31)

f3,3(melody) = min(1, (
3

4
)
#stepmotions

#motions
) (32)

f3,4(melody) = bump[0,4](# direction change) (33)

Appendix 17

F1,1(Piece) = 1− Avg
voices

tanh(dist(voice, range)) (34)

F1,2(Piece) =

(
Avg

(v+,v−)∈Pairs

min(2S(min(v+ − v−), 1)

)
− Penaltyoverlap

(35)

where Penaltyoverlap =

{
0, overlaps < 0.2allnotes

S(0.1overlaps), else

(36)

where Pairs = {(voicei, voicej) : i < j} (37)

(38)

(39)

F2,2(Piece) = Avg
chord transitions

whether transition free of parallel/hidden P8 or P5

(40)

F2,3(Piece) = Avg
chords

C(chord) (41)

where C(chord) =
(10, 5, 1)T

‖(10, 5, 1)‖
(CRouter,CRbass related,CRinner) (42)

where CR refers to the consonance ratio of a set of intervals (43)

F2,4(Piece) = Avg
chords

(1, 1, 1, 0.2)T

‖(1, 1, 1, 0.2)‖
np.isin([0, 3, 4, 5], pcZ2

(chord)) (44)

where pcZ2
(chord) = chord’s directed intervals taking smallest inversion

(45)

F2,5(Piece) =
1

2
Avg

cadential chords
dist(chord, targetchord) + evabass5̂1̂ (46)

where evabass5̂1̂ =
1

24
‖(bassmotion− (7, 0))‖L1 (47)

F4,1(Piece) = min(
nvoicesl

∗

len(voice)
, 1) (48)

where l∗ = min
i<j

Dist(argmax(voicei), argmax(voicej)) (49)

